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 A B S T R A C T

Tropical river ecosystems face substantial threats, leading to a sharp decline in their biodiversity. High-
resolution data on the spatial distribution of biodiversity is essential for devising effective conservation 
strategies. However, biodiversity information is limited because traditional assessment methods often face 
challenges in these vast, inaccessible environments. Here, we aim to assess whether combining large-scale 
environmental DNA (eDNA) data with environmental variables generated from remote sensing images in 
machine learning models can overcome this limitation. We used a fish eDNA dataset of 264 samples collected 
from major tropical rivers—the Casamance, Cuando, Cunene, Okavango, and Zambezi (Africa); the Magdalena, 
Maroni, and Oyapock (South America); and the Kinabatangan (Southeast Asia)—together with aquatic and 
terrestrial variables derived from remote sensing imagery. Based on this data, we constructed both river-specific 
and multi-river Random Forest models to predict fish species richness and the Shannon diversity index. The 
models exhibited a good fit to the data, indicating the suitability of variables in capturing the determinants of 
fish biodiversity in these rivers. Moreover, the models effectively predicted the metrics during cross-validation, 
underscoring their utility in generating biodiversity maps along large tropical rivers. Although predictions for 
unencountered rivers remain challenging, the models are able to capture large-scale patterns. With further 
refinement and expansion through additional data, this integrated approach holds promise for generating 
biodiversity insights without extensive on-site sampling requirements. Our study highlights the potential of 

combining eDNA with remote sensing variables to model biodiversity patterns in tropical river ecosystems.
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1. Introduction

Tropical rivers are some of the most diverse ecosystems on Earth, 
characterized by a remarkable array of species coexisting in these vi-
brant aquatic environments (Dudgeon, 2000; Encalada et al., 2019). In 
particular, they provide habitat for a large number of fish species, with 
51% of all freshwater fish species occurring in six major tropical river 
basins (Val et al., 2022). By sustaining fisheries, allowing transport, and 
serving as a source of drinking water, rivers further play a vital role 
in supporting the livelihoods of local communities residing along their 
shores (Lázaro-Vázquez et al., 2018; McIntyre et al., 2016). However, 
the biodiversity in rivers is encountering considerable threats as various 
as the construction of dams, land use alterations, and the introduction 
of invasive species (Darwall et al., 2018; Carrizo et al., 2017; Salgado 
et al., 2022). Comprehensive understanding is essential for devising im-
pactful, data-driven conservation strategies and monitoring programs 
to effectively reverse the biodiversity decline (Darwall et al., 2018; 
Miqueleiz et al., 2023).

Environmental DNA (eDNA) can enhance the capacity to quickly 
survey and assess biodiversity in freshwater ecosystems (Baird and 
Hajibabaei, 2012; Pawlowski et al., 2021). This complex mixture of 
intracellular DNA from living cells and extracellular DNA from sources 
such as skin, hair, urine, feces, or carcasses is directly extracted from 
environmental samples (Pawlowski et al., 2020). Metabarcoding, which 
combines high-throughput DNA sequencing with taxonomic reference 
libraries, then allows for the rapid and comprehensive identification of 
the taxa from which the DNA originates, thereby facilitating ecosys-
tem assessment across large spatial scales (Deiner et al., 2016, 2017; 
Ruppert et al., 2019; Cilleros et al., 2019). Furthermore, eDNA stands 
out as a cost-effective method with a high detection capacity (Boivin-
Delisle et al., 2021; Polanco Fernández et al., 2021). Alongside the 
methodological refinement, eDNA is progressively gaining prominence 
in assessing large-scale freshwater biodiversity (Altermatt et al., 2020; 
Lyet et al., 2021; Prié et al., 2023). Recent studies have demon-
strated the effectiveness of eDNA in studying biodiversity within large 
river systems (Pont et al., 2018; Cheng et al., 2023; Cantera et al., 
2022; Coutant et al., 2023). However, most investigations rely on data 
collected at discrete sampling locations, which are often separated 
by considerable spatial gaps—sometimes spanning tens of kilometers. 
This reliance on isolated sampling points limits the ability to capture 
continuous spatial patterns of biodiversity across entire river systems.

Satellite remote sensing (hereafter, remote sensing) provides regu-
lar, gap-free observations of the Earth’s surface over time (Ozesmi and 
Bauer, 2002), which can serve as a valuable tool for acquiring infor-
mation on the environmental conditions and habitat structures of both 
the aquatic and terrestrial surrounding of eDNA sampling areas (Zong 
et al., 2023). Therefore, integrating remote sensing data with eDNA 
sampling enables a more comprehensive understanding of riverine 
ecosystems (Domisch et al., 2015; Revenga et al., 2005; Campbell et al., 
2011). Remote sensing provides high spatial and temporal resolution 
observation coverage, capturing a wide range of ecological properties, 
including vegetation indices (Sims et al., 2006; Crippen, 1990), sur-
face temperature (Malakar et al., 2018; Vanhellemont, 2020a), water 
quality parameters (Olmanson et al., 2008), and hydrological charac-
teristics (Schmugge et al., 2002). This capability facilitates detailed, 
continuous mapping and monitoring of habitat conditions across broad 
spatial and temporal scales, which is particularly valuable for assessing 
the heterogeneity of riverine landscapes (Hugue et al., 2016; Mertes 
et al., 1995). Thereby, remote sensing enables the modeling and in-
terpolation of eDNA data, bridging the gap between discrete sampling 
and broader ecological patterns. This approach has the potential to 
provide critical ecological insights and improve biodiversity monitoring 
in complex riverine landscapes.

Fish are recognized as indicators for monitoring the health of large 
river ecosystems (Schiemer, 2000; Schmutz et al., 2007), making them 
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an appropriate focal point for evaluating the functionality and reliabil-
ity of the integrated approach. Fish habitat requirements are influenced 
by a spectrum of factors encompassing both aquatic and terrestrial 
realms (Dubey et al., 2012; Humpl and Pivnička, 2006). In terms of 
water variables, fish occurrence is expected to be influenced by water 
quality, water clarity, and water temperature (Rashid et al., 2018). The 
quality of water, characterized by factors such as nutrient levels and 
pollutant concentrations, impacts the availability of resources and the 
overall health of the aquatic habitat (Li et al., 2012; Sutela et al., 2010). 
Water clarity affects visibility and thus influences predator–prey inter-
actions (Offem et al., 2009). Water temperature, a critical determinant 
of fish physiology, influences metabolic rates and reproductive pat-
terns (Marshall and Elliott, 1998; Wolter, 2007).  In terms of terrestrial 
variables, vegetation greenness, and canopy height collectively serve 
as critical indicators of riparian health, influencing the availability of 
terrestrial insects and fruits, providing essential shade for fish habitats, 
and creating diverse microhabitats that influence the distribution and 
behavior of fish species (Cetra and Petrere, 2007; Beltrão et al., 2009; 
Montag et al., 2019). Human modifications to the landscape, such 
as urbanization and agricultural activities, introduce alterations to 
the physical and chemical properties of the ecosystem (Leitão et al., 
2018). In addition, human landscape use can also indicate potential 
anthropogenic pressures, including fishing practices (Ferguson et al., 
2013) and pollution (Ngoye and Machiwa, 2004; Su et al., 2021). 
Finally, elevation, a topographical factor, influences the overall flow 
and structure of river systems, thereby affecting fish habitats (Carvajal-
Quintero et al., 2015; Picado Barboza and Umaña Villalobos, 2018). 
All these environmental variables can be approximated using satellite 
images (Bergen et al., 2009; Drusch et al., 2012; Turner et al., 2003), 
and their utility has previously been demonstrated in fish species 
distribution modeling (Zong et al., 2023).

This study explores the potential of integrating eDNA metabarcod-
ing with remote sensing data to model fish biodiversity in tropical river 
systems. Given the challenges of traditional biodiversity assessments in 
these vast and often inaccessible environments, this approach offers 
a promising means of generating information. We hypothesize that 
fish distributions within individual rivers are strongly influenced by 
environmental variables in both the aquatic and terrestrial realms, and 
consequently expect that models combining eDNA and remote sensing 
data should perform well at predicting biodiversity patterns within 
a single river. However, we also anticipate significant differences in 
baseline biodiversity among different rivers, driven by variations in 
regional species pools and biogeographic factors. This cross-river vari-
ability may present greater challenges for model performance when 
applied across river systems. However, understanding the extent of this 
predictive capacity is crucial for generating comprehensive biodiversity 
information in tropical freshwater ecosystems. To test these hypotheses, 
we analyze biodiversity metrics — species richness and Shannon index 
— derived from eDNA samples collected across 264 sites in nine major 
tropical rivers spanning Africa, South-East Asia, and South America. 
Using remote sensing data, we extract key environmental variables 
representing aquatic and terrestrial habitat conditions and then trained 
Random forest models to assess the relationships between these vari-
ables and biodiversity metrics. Specifically, the study seeks to address 
the following research questions:

1. To what extent is the variation in fish diversity in tropical rivers 
driven by local habitat features versus differences among river 
systems?

2. How effectively can models combining eDNA and remote sens-
ing data capture the patterns of fish diversity in tropical river 
ecosystems?

3. How accurately can the integrated models predict the variation 
in diversity within and across different tropical rivers?
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Fig. 1. Map showing the locations of 264 environmental DNA (eDNA) sampling sites distributed across nine major tropical rivers: the Magdalena (a), Casamance (b), Kinabatangan 
(c), Maroni and Oyapock (d), and the Cuando, Cunene, Okavango, and Zambezi (e).
2. Methods

2.1. Environmental DNA sample sites

This study utilized a comprehensive eDNA dataset from 264 sam-
ples collected in nine tropical rivers spanning three continents—the 
Casamance (Senegal), Cuando (Namibia), Cunene (Angola/Namibia), 
Kinabatangan (Malaysia), Magdalena (Colombia), Maroni (French
Guiana), Oyapock (French Guiana), Okavango (Angola/Namibia), and 
Zambezi (Namibia/Zambia) river systems (Fig.  1). The selected rivers 
encompass varied tropical ecosystems, allowing for a comprehensive 
evaluation of the approach across multiple habitat types. The eDNA 
data for the Maroni and Oyapock rivers in French Guiana were sourced 
from an existing dataset (Cantera et al., 2022) and included 36 sites 
on the Maroni River sampled in 2017, each with two replicates (68 
samples), and 38 sites on the Oyapock River sampled in 2018, each 
with two replicates (74 samples). For the remaining rivers, the data 
were collected during various sampling campaigns. Specifically, the 
dataset included 13 sites on the Casamance River sampled in 2018, each 
with two replicates (26 samples); 2 sites on the Cuando River sampled 
in 2022, each with two replicates (4 samples); 5 sites on the Cunene 
River sampled in 2022, each with two replicates (10 samples); 25 sites 
on the Kinabatangan River sampled in 2019, with 11 sites having two 
replicates (36 samples); 13 sites on the Magdalena River sampled in 
2022, with 10 sites having two replicates (23 samples); 8 sites on the 
Okavango River sampled in 2022, with 7 sites having two replicates 
(15 samples); and 4 sites on the Zambezi River sampled in 2022, 
each with two replicates (8 samples).  Due to the small sample size 
and close proximity of the Cuando, Cunene, Okavango, and Zambezi 
rivers in Southern Africa, we grouped them together in the analysis 
3 
and will hereafter refer to them collectively as the Okavango. The 
same sampling methodologies were employed in the different rivers 
which allows for comparisons between the diverse datasets used in this 
analysis (A.1).

2.2. Environmental DNA processing

2.2.1. Laboratory processing
The water samples of all rivers were subjected to DNA extraction, 

amplification (12 PCR replicates per field sample), and high-throughput 
sequencing, following the established standard methodologies of Spy-
gen (Cantera et al., 2022). Consistent across all rivers, for DNA am-
plification, the mitochondrial 12S rRNA gene fragment was targeted, 
utilizing ‘‘teleo’’ primers (forward primer-ACACCGCCCGTCACTCT, re-
verse primer-CTTCCGGTACACTTACCATG) known for their relevant 
performance in detecting bony fish species from eDNA (Valentini et al., 
2016).

2.2.2. Bioinformatic analysis
A specialized bioinformatic pipeline was employed to analyze the 

high-throughput sequencing data derived from the samples (Marques 
et al., 2020). Initially, paired-end reads were merged using VSEARCH
(Rognes et al., 2016), and a demultiplexing process was performed on 
the PCR replicate level. Subsequent steps included primer trimming 
using Cutadapt (Martin, 2011) and the dereplication of sequences 
using VSEARCH (Rognes et al., 2016) to facilitate redundancy removal. 
Molecular Operational Taxonomic Units (MOTUs) were defined using 
the SWARM clustering algorithm (Mahé et al., 2014). MOTUs are 
clusters of highly similar DNA sequences grouped based on genetic 
similarity, effectively serving as proxies for species. This method proves 
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advantageous in tropical river ecosystems, where biodiversity is high, 
yet reference databases often lack comprehensive information (Marques 
et al., 2021; Polanco Fernández et al., 2021). Previous research demon-
strated the effectiveness and reliability of MOTUs in estimating species 
diversity based on the ‘‘teleo’’ primer in the Rhone River (Marques 
et al., 2020). After clustering the MOTUs, chimeric sequences were 
removed, and MOTUs with fewer than ten reads were excluded to 
mitigate the inclusion of MOTUs originating from PCR errors. Tax-
onomic assignments were then achieved using the ecotag algorithm 
implemented in the Obitools toolkit (Boyer et al., 2016), providing a 
taxonomic context to the identified MOTUs. Therefore, as reference 
database, a combination of the European Nucleotide Archive (ENA) 
reference database (release 143, March 2020) and an internal custom 
reference database containing approximately 800 sequences (Mathon 
et al., 2023) was used. Following the taxonomic assignment, tag-
jumps (Schnell et al., 2015) were corrected by removing sequences with 
an abundance frequency of less than 0.001 per taxon/MOTU and per 
library. When the reference database has limited species coverage, the 
ecotag algorithm (Boyer et al., 2016) may assign sequences to genus 
or family levels, even with low similarity. To address this, the assign-
ments were refined by assigning species level for sequences matching 
at >98% similarity, genus level for sequences matching at 96%–98% 
similarity, family level for sequences matching at 90%–96% similarity, 
and order or higher level for sequences matching at less than 90% 
similarity. These adjustments were made to improve the accuracy of 
taxonomic assignments, aligning with the criteria proposed by Marques 
et al. (2020). Finally, the LULU algorithm (Frøslev et al., 2017) was 
implemented using an 84% identity threshold to clean MOTUs flagged 
as erroneous based on sequence identity between MOTUs, along with 
considerations of patterns of co-occurrence as well as abundances.

2.3. Biodiversity metrics

In the biodiversity computations, the unit employed is not a tra-
ditional species but the MOTUs generated by the SWARM algorithm. 
Throughout this manuscript, references to ‘species’ should therefore 
be understood as referring to MOTUs. This choice stems from the 
realization that the depth of available reference data in tropical rivers 
is limited, making it challenging to assign a substantial number of 
sequences to species levels (Marques et al., 2020). MOTUs serve as 
a pragmatic approach, allowing us to capture the diversity of fish 
populations based on genetic similarity rather than relying solely on 
species-level classifications in a system with limited reference data base 
depth (Marques et al., 2020). Biodiversity assessments were conducted 
by using two key metrics: species richness and the Shannon index. 
Species richness is a metric that quantifies the number of fish species 
present within a given sample or location (Lamb et al., 2009). A higher 
species richness indicates a more diverse fish community, reflecting a 
greater variety of ecological niches and roles within the ecosystem. The 
Shannon index (Margalef, 1958), on the other hand, considers both 
species richness and the evenness of species distribution (Lamb et al., 
2009). A higher Shannon index reflects a community where species 
are more evenly distributed, indicating a balanced and resilient ecosys-
tem (Spellerberg, 2008). The abundance in the Shannon index was 
estimated by the number of reads found for a particular MOTU cluster. 
Whilst the number of reads must not always precisely depict the num-
ber of individuals of a given species, it was previously shown that eDNA 
can be used to broadly quantify relative fish abundances (Lacoursière-
Roussel et al., 2016; Spear et al., 2021; Yates et al., 2019). In particular, 
the Shannon index (𝐻) for a given sample was calculated using the 
formula: 

𝐻 = −
𝑛
∑

𝑖=1
𝑝𝑖 ⋅ log(𝑝𝑖) (1)

where:

𝑝𝑖 ∶ Proportion of reads for the 𝑖th MOTU cluster
𝑛 ∶ Number of MOTUs
4 
2.4. Generation of remote sensing variables

Several variables critical for fish assemblage in tropical rivers were 
calculated using remote sensing imagery. The river water surface tem-
perature (RST) was determined using data from the thermal infrared 
sensor on Landsat-8 (Zong et al., 2023; Vanhellemont, 2020a). Sub-
sequently, the Secchi depth (SD), serving as a proxy for water trans-
parency, and the trophic state index (TSI), indicating nutrient enrich-
ment, were calculated (Olmanson et al., 2008) utilizing both Level 1C 
(Top-of-Atmosphere Reflectance) and Level 2A (Surface Reflectance) 
products obtained from the Multispectral Instrument (MSI) aboard 
Sentinel-2, as well as data from the Landsat-8 Operational Land Imager 
(OLI) (Drusch et al., 2012; Page et al., 2019). Various vegetation 
indices were utilized to capture a comprehensive view of the vegetation 
surrounding the rivers. The forest canopy height was determined fol-
lowing the procedures outlined by Lang et al. (2023). The Normalized 
Difference Vegetation Index (NDVI) was calculated using data from 
the Landsat-8 OLI and the Enhanced Vegetation Index (EVI) (Sims 
et al., 2006) was extracted from MODIS products. In addition to these 
indices, total evapotranspiration and gross primary productivity (GPP) 
were retrieved from MODIS products. Evapotranspiration contributes 
to understanding the overall water and energy dynamics within the 
river-forest system (Kumagai et al., 2005) and GPP provides insights 
into ecosystem productivity and the efficiency of photosynthetic pro-
cesses (Gebremichael and Barros, 2006). We calculated the slope of the 
water surface along the river channel, which can impact fish migration 
patterns and spawning behaviors (Jaramillo-Villa et al., 2010), as well 
as the elevation of the site. Further, the surrounding water area for 
each sample was computed by summing all water pixels within the 
predefined buffers. The analysis also incorporated the Human Mod-
ification Index (HMI) (Kennedy et al., 2019) which quantitatively 
measures human impact on the surrounding environment, encompass-
ing various anthropogenic alterations. The variables were computed 
as the mean and standard deviation within a 3.5 km radius buffer 
zone around each sampling location, a range previously identified as 
useful in similar applications (Zong et al., 2023). Including standard 
deviation computations allows us to assess habitat heterogeneity as the 
standard deviation values capture each variable’s degree of variability 
or dispersion within the specified radius. For water variables, non-
water pixels were masked during the computation, ensuring a focused 
analysis of aquatic features. In contrast, water pixels were masked for 
terrestrial variables to concentrate on land-based characteristics. The 
temporal scope of the satellite imagery analysis extended over seven 
months for each river. This period covered three months before the 
initiation of sampling on a given river and three months afterward. 
The choice of this prolonged timeframe was imperative to secure cloud-
free images, a particularly challenging task in tropical zones due to 
the persistent formation of robust cloud cover. All variables derived 
from time-sensitive satellite imagery were computed using data within 
this shared period to ensure temporal alignment, whereas variables 
based on static or pre-composited products were included as-is. The 
computations were executed using Google Earth Engine (Gorelick et al., 
2017) (see Table  1).

2.5. Biodiversity variability

To discern whether variability in biodiversity metrics was primarily 
shaped by local or global factors, we first aggregated sample-based 
species richness and Shannon index values by river. The cross-sample 
median provides a central estimate of biodiversity within each river, 
while the spread indicates within-river heterogeneity. We then ex-
plored environmental gradients among sampling sites by performing 
a Principal Component Analysis (PCA) on the five most important 
predictors identified by the global models, using the prcomp function 
in R and retaining the first two principal components for visualization. 
We assessed the statistical significance of river-level separation in this 
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Table 1
Overview of the aquatic and terrestrial variables generated for the subsequent biodiversity analysis. Values were extracted as mean and standard deviation within a circular buffer 
of 3.5 km radius around the sample sites.
 Abbreviation Variable_Name Description  
 RST/RST_std Mean river water surface temperature/Standard deviation of 

river water surface temperature (Vanhellemont, 2020a)
Mean and standard deviation of river water surface 
temperature within the buffer

 

 SD/SD_std Mean Secchi depth/Standard deviation of Secchi depth (Page 
et al., 2019)

Mean and standard deviation of Secchi depth within the 
buffer

 

 TSI/TSI_std Mean trophic state index/Standard deviation of trophic state 
index (Page et al., 2019)

Mean and standard deviation of trophic state index within 
the buffer

 

 NDVI/NDVI_std Mean NDVI/Standard deviation of NDVI (Gessesse and 
Melesse, 2019)

Mean and standard deviation of normalized difference 
vegetation index within the buffer

 

 EVI/EVI_std Mean EVI/Standard deviation of EVI (Sims et al., 2006) Mean and standard deviation of enhanced vegetation index 
within the buffer

 

 GPP/GPP_std Mean gross primary productivity/Standard deviation of GPP Mean and standard deviation of gross primary productivity 
within the buffer

 

 CH/CH_std Mean canopy height/Standard deviation of canopy height 
(Lang et al., 2023)

Mean and standard deviation of canopy height within the 
buffer

 

 EP/EP_std Mean total evapotranspiration/Standard deviation of total 
evapotranspiration

Mean and standard deviation of total evapotranspiration 
within the buffer

 

 Slope/Slope_std Mean slope/Standard deviation of slope (Farr et al., 2007) Mean and standard deviation of river surface slope within 
the buffer

 

 Elev/Elev_std Mean elevation/Standard deviation of elevation Mean and standard deviation of elevation within the buffer  
 HMI/HMI_std Mean human modification index/Standard deviation of 

human modification index (Kennedy et al., 2019)
Mean and standard deviation of human modification index 
within the buffer

 

 WaterA Sum of surrounding water area (Zong et al., 2023) Total water area within the buffer  
environmental space by applying permutational multivariate analysis 
of variance (PERMANOVA) with the vegan::adonis2 function on 
the Euclidean distances of the scaled predictors. Finally, to investigate 
taxonomic composition, we created a family-level presence/absence 
matrix (1 if a family appeared in a sample, 0 otherwise), computed 
Jaccard dissimilarities with the vegdist function, and performed a 
Principal Coordinates Analysis (PCoA) using cmdscale, keeping the 
first two axes for plotting. Significance of river differences in com-
munity composition was similarly evaluated via PERMANOVA on the 
Jaccard distance matrix. We focused on the family level because the 
SWARM algorithm resulted in substantial gaps for finer taxonomic as-
signments, and 73% of samples had at least a family-level classification. 
MOTUs without an assigned family were excluded from the analysis.

2.6. Model fitting

To capture the non-linear relationships within ecological systems, 
we employed random forest regression models constructed using the 
R randomForest package, implementing Breiman’s random forest algo-
rithm (Breiman, 2001; Liaw and Wiener, 2002; R Core Team, 2021). 
Two distinct local models were developed for fish species richness 
and Shannon diversity, focusing on the Maroni and Oyapock rivers as 
representative cases due to their substantial sample sizes of 68 and 74, 
respectively. The other four rivers were excluded in this step due to 
their significantly smaller sample sizes, which were deemed insufficient 
for applying and testing meaningful random forest models in a river-
specific context (Luan et al., 2020; van der Ploeg et al., 2014). Further, 
to assess the efficacy of model fitting across river systems on global 
scale, data from all six rivers was combined to create a comprehensive 
global model. All environmental variables were normalized within the 
datasets to address range differences. Subsequently, Pearson correlation 
coefficients were computed to assess potential correlations between 
the predictors. In instances where two variables exhibited a Pearson 
correlation exceeding 0.75, one of them was excluded based on domain 
knowledge. This aids in mitigating the impact of multicollinearity, 
thus preventing imprecision in subsequent analyses. To improve model 
efficiency and interpretability, recursive feature elimination (RFE) was 
implemented using the rfe function from the R caret package (Kuhn, 
2008). The selection criterion was therefore based on minimizing the 
RMSE. The capacity of model fitting was then evaluated by using the 
whole dataset as training data. RMSE and percentual RMSE (RMSE nor-
malized by the mean of the data) were computed to quantify the model 
5 
fit. The coefficient of determination (𝑅2), representing the proportion 
of the variance in the dependent variable explained by the model, was 
employed to assess the explained variance in the training set (Chicco 
et al., 2021).

To uncover the main drivers shaping the patterns in fish species 
richness and Shannon index, the variable importance of the mod-
els were extracted directly from the randomForest object (Liaw and 
Wiener, 2002). The permutation-based MSE reduction was used as 
measure of importance (as implemented in the randomForest package). 
To further analyze the directional impact of the drivers, we generated 
partial dependency plots using the ‘‘partialPlot’’ function from the 
randomForest package (Liaw and Wiener, 2002). These plots illustrate 
the marginal effect of each predictor variable on the response while 
accounting for the average effects of all other variables in the model, 
and are based on the final selected models.

2.7. Model evaluation

2.7.1. Evaluation on encountered rivers
To assess the predictive performance of the models on unseen data, 

the dataset was initially divided randomly into five equally sized folds. 
For the global model, each fold contained proportional representation 
from individual rivers constituting the global dataset. Subsequently, 
distinct local and global models were iteratively trained on four folds 
and evaluated on the fifth fold, thus leading to a cross-validation 
procedure (Kohavi, 1995). The variables included in the models were 
those selected during the previous model fitting process using the 
combined dataset. To enhance robustness and account for variability in 
the predictions, bootstrap resampling was performed 10 times within 
each fold, generating multiple resampled datasets for training the 
models. 95% prediction intervals across the bootstrap iterations were 
computed for all samples. The performance was then evaluated using 
RMSE, percentual RMSE, and 𝑅2 metrics. This methodology examines 
the models’ capacity to accurately forecast outcomes on the rivers they 
were trained on, thus offering insights into their viability for generating 
biodiversity maps along rivers.

2.7.2. Evaluation on unencountered rivers
Additionally, to assess the feasibility of predicting biodiversity met-

rics in previously unsampled rivers, global models were consistently 
trained using data from five selected rivers, with each iteration ex-
cluding one river during the fitting process. Subsequently, the excluded 
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Fig. 2. (A) Boxplots of species richness (a) and Shannon index (b) per sample across each river in the dataset. Boxes span the interquartile range, the horizontal line marks the 
median, whiskers extend to 1.5 times the interquartile range, and points represent individual samples. (B) Principal Component Analysis (PCA) of the environmental variables at 
each sampling site, focusing on the five most important predictors identified by the global richness models (canopy height, elevation, human modification index, river surface 
temperature, and the standard deviation of evapotranspiration). The first two components are displayed, with the percentage of variance explained in parentheses. Each point 
represents a sample colored by river, and 95% confidence ellipses highlight group clustering. (C) Principal Coordinates Analysis (PCoA) based on Jaccard dissimilarity of family-
level taxonomic composition across samples. The first two axes are shown, with variance explained in parentheses. Each point corresponds to a sample colored by river, and 95% 
confidence ellipses illustrate clustering patterns among rivers.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
river was used as a testing set for predicting the biodiversity metrics. 
To quantify uncertainty, bootstrap resampling was performed 10 times 
for the training data in each iteration. This approach provides insights 
into the models’ predictive performance on rivers not included in the 
training phase and their potential application in generating biodiversity 
assessments across tropical river ecosystems.

3. Results

3.1. Biodiversity variability

The Oyapock and Maroni rivers exhibit the highest median species 
richness, with 84 and 78.5 species per sample, respectively, while 
the Kinabatangan shows the lowest at 22.5, highlighting significant 
variation across the studied rivers (Fig.  2A,a). The Maroni River, in par-
ticular, displays considerable variability, with species counts ranging 
from as few as 13 to as many as 151 in individual samples (Fig.  2A,a). 
For the Shannon index per sample, the Oyapock and Maroni rivers 
again stand out, recording the highest median values of 3.59 and 3.56, 
respectively (Fig.  2A,b). Environmental conditions among sampling 
sites vary, with notable clustering observed between the Maroni and 
Oyapock, as well as between the Magdalena and Casamance rivers 
(Fig.  2B). At the family level, the South American rivers — Maroni, 
Oyapock, and Magdalena — exhibit high taxonomic similarity. Interest-
ingly, the Kinabatangan and Casamance rivers also show similarity in 
their family-level composition, whereas the Okavango remains distinct 
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in PcOA space. PERMANOVA confirmed that river-level separations 
were statistically significant in both the environmental (PCA) and 
community (PCoA) analyses (p < 0.001).

3.2. Model performance in capturing fish diversity patterns

The species richness and Shannon index models demonstrate good 
fit to the data across diverse contexts (Fig.  4). The global models 
exhibit an explained variance (𝑅2) of 95% for richness and 90% for 
the Shannon model, complemented by low RMSE values (Fig.  4a,b), 
which is strong considering the extensive distribution of rivers across 
three continents and the consequently relatively limited sample size. 
The local models applied to the Maroni and Oyapock rivers score 
explained variances of 91% and 81% in richness models and 74% and 
82% in Shannon index models, respectively (Fig.  4c–f). The Maroni 
models reveal a significantly wider distribution of values compared to 
the Oyapock models, underscoring the pronounced ecological gradient 
within the Maroni river (Fig.  2).

Canopy height stands out as the predominant predictor for both 
global species richness and the Shannon index, with higher values 
positively affecting both metrics. The Human Modification Index and 
river surface temperature also have high predictive power in the models 
of both metrics, both showing a negative effect. Additionally, global 
richness is strongly influenced by elevation and the standard deviation 
in total evapotranspiration whilst in the Shannon index model, the total 
sum of surrounding water area and the standard deviation in canopy 
height further emerge as crucial (see Fig.  3).
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Fig. 3. Variable importance via permutation-based mean squared error (MSE) reduction for the top five variables in the global models of species richness (a) and Shannon index 
(c), with corresponding partial dependency plots (b,d) (Wickham et al., 2019). Equivalent plots for the local models are provided in Appendix A.2.
3.3. Predictive performance of integrated models

3.3.1. Evaluation on encountered rivers
In the five-fold cross-validation testing, the global models demon-

strated good performance, achieving an explained variance of
0.82 ± 0.06 for the species richness model and 0.71 ± 0.12 for the 
Shannon index model (Fig.  4a–b). On a more localized scale, the 
Maroni models exhibited efficacy in predicting the richness of the 
reserved samples, achieving an 𝑅2 value of 0.73 ± 0.11. The Shannon 
index prediction is less successful with 0.37 ± 0.23 (Fig.  4c–d). The 
Oyapock models displayed a slight decline in 𝑅2, registering values of 
0.19 ± 0.39 and 0.12 ± 0.54, respectively (Fig.  4e–f). However, they 
showcased a lower percentage RMSE than the corresponding global 
and Maroni river models. This discrepancy can be attributed to the 
observably lower overall variance in the Oyapock eDNA data.

3.3.2. Evaluation on unencountered rivers
When predicting fish species richness and Shannon index values 

for rivers excluded from the training process, individual models show 
limited accuracy (Fig.  5). The negative individual 𝑅2 values indicate 
performance below a baseline model that predicts the mean. However, 
a broader view reveals a noticeable trend: collectively, the models 
generate predictions that fall within the expected value range (Fig. 
5). Specifically, the combined species richness predictions yield an 𝑅2

value of 0.39, indicating moderate predictive power. Similarly, the ag-
gregate Shannon index predictions result in an 𝑅2 of 0.46. These results 
indicate that while individual models may struggle with accuracy, their 
combined predictions offer an approximation of the biodiversity metric 
values in unencountered rivers.

4. Discussion

This study demonstrates the efficacy of combining eDNA metabar-
coding data with environmental variables derived from remote sensing 
for capturing and predicting fish biodiversity patterns in tropical river 
ecosystems. The integrated models demonstrate a good fit with their 
training data on both local and global scales. Additionally, particularly 
the richness models are effective in predicting fish biodiversity within 
the rivers on which they are trained. This offers potential for generating 
continuous biodiversity maps which can guide conservation strategies 
in those highly pressured ecosystems (see Fig.  6). Furthermore, while 
7 
the global models currently fall short of achieving accurate predictions 
for unencountered rivers, they exhibit the capacity to forecast large-
scale patterns and trends. This suggests the considerable potential of the 
approach, especially when extended with additional samples becoming 
available.

4.1. Biodiversity variability

The results reveal variation in both median fish species richness 
and Shannon index values across the studied rivers, indicative of strong 
cross-river differences in baseline biodiversity. One factor contributing 
to those differences is the variability in environmental conditions across 
the rivers (Fig.  2B). For instance, the Maroni and Oyapock rivers 
traverse dense rainforest, while the Casamance river flows through 
mangrove forests and grasslands. This environmental variability influ-
ences fish habitats; for example, riparian vegetation provides fruits, 
leaves, and insects directly consumed by fish or integrated into the river 
food web via macroinvertebrate shredders, which are in turn crucial 
food sources for fish (Vannote et al., 1980). Beyond the environment, 
biogeographical factors cause differences in river baseline biodiversity 
as the separation of river basins by impassable land and oceanic barriers 
leads to unique extinction and speciation processes within each insular 
river system (Oberdorff et al., 2011; Dias et al., 2014). This is also re-
flected in the variation in taxonomic composition across the rivers (Fig. 
2C.) While cross-river differences are substantial, variability persists 
within rivers due to environmental conditions differing across sampled 
locations (Fig.  2B). The significant variation in baseline biodiversity 
among rivers underscores the necessity of recognizing ecological dy-
namics not only at local but also at global scales for informative model 
development. While the variables employed in this study adequately 
account for local conditions influencing fish habitats by integrating 
various factors in the aquatic and terrestrial surroundings of the sample 
sites (Zong et al., 2023), future research could enhance consideration of 
global determinants by incorporating biogeographic factors, which are 
well-documented for their strong influence on large-scale biodiversity 
patterns (Oberdorff et al., 2011; Collen et al., 2014).

4.2. Model performance in capturing fish diversity patterns

The effectiveness of remote sensing-derived environmental vari-
ables in capturing the distribution of biodiversity in tropical rivers, 
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Fig. 4. Combined visual representation of model fit (blue) and five-fold cross-validation predictions (green) for species richness (left) and Shannon diversity index (right). The 
black dashed line represents the identity line, indicating perfect agreement between predicted and observed values. For cross-validation predictions, points represent the mean of 
10 bootstrap resampling iterations, with 95% prediction intervals shown as bars for each sample. Evaluation metrics (𝑅2, RMSE, and %RMSE) for cross-validation represent the 
mean and standard deviation across the five folds.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Combined predictions for species richness (a) and Shannon index (b) models, trained on data from five rivers and applied to predict values for sites in the sixth river. 
The black dashed line represents the identity line, indicating perfect agreement between predicted and observed values. Points represent the mean of 10 bootstrap resampling 
iterations, with 95% prediction intervals shown as error bars for each sample. Performance metrics are reported as the mean and standard deviation across the individual rivers, 
as well as overall metrics for the combined predictions. These results provide an overview of model performance on previously unencountered rivers.
particularly regarding species richness, is evident from the robust fit 
of the developed models to the training data. The strongly positive 
impact of canopy height can be attributed to its role in providing 
shade, food, and thermal buffering to the river, as well as influencing 
nutrient dynamics and water quality, all of which are crucial for fish 
species assemblage (Beltrão et al., 2009; Tabacchi et al., 2000; Vannote 
et al., 1980). Conversely, the Human Modification Index negatively 
impacts biodiversity, as landscape changes from human activities like 
deforestation and pollution disrupt tropical river systems and their 
fish communities (Arantes et al., 2018; Leitão et al., 2018). The sharp 
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decline in the initial section of the response curve indicates that pristine 
river ecosystems are particularly favorable for high fish biodiversity, 
and even minor increases in human impact can result in a severe 
loss of biodiversity. Elevated river surface temperatures might nega-
tively impact fish richness and the Shannon index by disrupting the 
thermal regimes critical for many fish species, particularly in tropical 
regions where these species often have narrow thermal niches and are 
constantly close to their upper thermal limits (Lapointe et al., 2018; 
Stevens, 1989). Elevation emerges as an important predictor in the 
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Fig. 6. Spatial representation of model predictions for species richness (A) and Shannon index (B) in the Maroni (a, c) and Oyapock (b, d) rivers in French Guiana. Predictions 
were generated using local models trained on each river separately.
global species richness model, not necessarily because it directly im-
pacts fish occurrence, but possibly because it explains baseline richness 
differences between rivers (Fig.  2).

4.3. Predictive performance of integrated models

The richness models effectively predict rivers on which they are 
trained. This presents a promising avenue for assessing biodiversity 
patterns in those ecosystems and generating insights valuable for fa-
cilitating effective conservation strategies. The RMSE values of the 
global, Maroni, and Oyapock species richness models are comparable, 
suggesting inherent challenges, such as biases and uncertainties associ-
ated with using eDNA to capture community compositions (Beng and 
Corlett, 2020). A similar pattern is observed for the Shannon index 
models, but here, the RMSE is significantly larger for the global model 
compared to the local ones. This outcome is anticipated, given that the 
Shannon index is likely more susceptible to biases introduced during 
DNA extraction, PCR amplification, or variations in total read numbers 
across different rivers (Beng and Corlett, 2020).

While models perform well on rivers encountered during training, 
predicting outcomes for geographically new regions presents a greater 
challenge. The models struggle to accurately predict outcomes for rivers 
not encountered during training, however, the forecasts generally align 
with the anticipated range (Fig.  5).. The constrained transferability ob-
served in this context is expected, given the considerable geographical 
distances and distinct tropical biome types among the studied rivers 
(Fig.  1). Future models could address the challenge of generalizing 
across rivers by incorporating biome types or geographic regions as 
categorical predictor variables. These variables could serve as proxies 
for fundamental biodiversity baselines that vary across regions. How-
ever, such an approach is heavily dependent on data availability, as 
categorical predictors require adequate representation during model 
training. In our study, most biome types were represented by only one 
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river, and at a continental scale, we had data for only a single river 
from Asia. This lack of representation made it impossible to evaluate 
model performance on rivers outside the training set without including 
them in the training data. As the use of eDNA sampling expands (Beng 
and Corlett, 2020; Ogden, 2021) and river eDNA datasets get larger, 
future models can be enabled to include biome or regional predictors. 
With such refinements, future models might go beyond predicting 
outcomes within individual rivers but also achieve robust generaliza-
tion across diverse river systems, offering insights into biodiversity 
patterns in under-sampled regions. As remote sensing data is regularly 
updated (Ozesmi and Bauer, 2002; Zong et al., 2023), the integration 
of remote sensing with expanded eDNA datasets has the potential to 
advance riverine ecosystem monitoring, reducing the need for repeated 
on-site sampling. However, achieving these goals will require further 
refinement of modeling approaches and the accumulation of larger and 
more representative datasets.

4.4. Limitations

We utilized the SWARM algorithm to mitigate the limited depth 
of reference databases for tropical fish species. However, SWARM has 
inherent limitations, as some MOTU clusters may not correspond to 
distinct biological species and can occasionally result from PCR and 
sequencing errors (Polanco Fernández et al., 2021). Therefore, for ac-
curate species-level identification, developing comprehensive reference 
databases for tropical environments remains essential. Additionally, our 
sampling effort was more extensive on the Maroni and Oyapock rivers 
compared to other rivers, biasing our dataset toward these two systems. 
Further, exact temporal alignment of environmental variable extraction 
was not possible due to cloud cover. However, extracting values within 
a six-month window centered on the sampling month should capture 
the broader environmental conditions during sampling.
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5. Conclusion and outlook

Our study demonstrates that combining eDNA and remote sensing 
data offers a promising framework for predicting fish biodiversity in 
tropical rivers. The integrated approach effectively estimates key bio-
diversity metrics — particularly species richness — in sampled rivers, 
making it a valuable tool for biodiversity mapping. While predictions 
for unsampled rivers currently show limited precision, they capture 
broad-scale biodiversity patterns. As eDNA data from a wider range 
of tropical rivers become available, model accuracy will likely im-
prove, supporting more reliable forecasts even in previously unsampled 
systems. Furthermore, our findings indicate that high-canopy habitats 
and limited human disturbance sustain more diverse fish communities, 
underscoring the importance of preserving near-pristine conditions in 
tropical rivers and their surrounding landscapes.
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