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Environmental DNA (eDNA) has the potential to provide more comprehen-
sive biodiversity assessments, particularly for vertebrates in species-rich
regions. However, this method requires the completeness of a reference data-
base (i.e. a list of DNA sequences attached to each species), which is not
currently achieved for many taxa and ecosystems. As an alternative, a range
of operational taxonomic units (OTUs) can be extracted from eDNA metabar-
coding. However, the extent to which the diversity of OTUs provided by a
limited eDNA sampling effort can predict regional species diversity is
unknown. Here, by modelling OTU accumulation curves of eDNA seawater
samples across the Coral Triangle, we obtained an asymptote reaching 1531
fish OTUs, while 1611 fish species are recorded in the region. We also accu-
rately predict (R² = 0.92) the distribution of species richness among fish
families from OTU-based asymptotes. Thus, the multi-model framework
of OTU accumulation curves extends the use of eDNA metabarcoding in
ecology, biogeography and conservation.

1. Introduction
Providing accurate biodiversity assessments is a critical goal in ecology and bio-
geography with estimations being constantly revised for some species-rich
groups [1]. This issue is increasingly important, given the accelerating human
footprint on Earth. The ongoing worldwide defaunation, characterized by mas-
sive population declines, may trigger the local or even global extinction of rare,
elusive and cryptic species that are still unknown or poorly documented [2,3].
Such biodiversity losses directly impact ecosystem functioning, but also human
health, well-being and livelihood [4,5]. This urges scientists to improve the
accuracy and extend the breadth of biodiversity inventories and monitoring.

In the marine realm, the detection of species occurrences is particularly chal-
lenging due to the vast volume to monitor, the high diversity of habitats, the
inaccessibility of some areas (e.g. deep sea) and the behaviour of some species
(cryptobenthic or elusive) [6,7]. Environmental DNA (eDNA) metabarcoding is
an emerging tool that can provide more accurate and wider biodiversity assess-
ments than classical census methods, particularly for rare and elusive species
[8–10]. This non-invasive method is based on retrieving DNA naturally released
by organisms in their environment, amplified by polymerase chain reaction
(PCR) and then sequenced to ultimately identify corresponding species [11].
However, inventorying and monitoring biodiversity using eDNA metabarcoding
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requires the completeness of a reference database to accurately
assign each sequence to a given species (e.g. [9]).

By now, only a minority of fish species are present in online
DNA databases for mitochondrial regions targeted by metabar-
coding markers, limiting the extent to which species diversity
can be revealed by eDNA. This proportion of sequenced species
is even lower in species-rich regions andpoorly sampledhabitats
or taxa, while the effort to complete genetic reference databases
is long and costly. As an alternative, a range of operational taxo-
nomic units (OTUs) can be extracted fromeDNAmetabarcoding
through filtering and clustering techniques [12]. Even if environ-
mental genomics approaches have a long tradition of using
OTU-based bioindicators [13], the extent to which the diversity
of OTUs from a limited number of eDNA samples can reveal
or predict the diversity of vertebrate species in a given biodiver-
sity hotspot has not yet been investigated. This is particularly
challenging for cryptobenthic fish species, which are key for
reef ecosystems [14] but usually missed by classical surveys [7].
We thus urgently need a regional case studywith awide breadth
of fish families and traits to test the potential of OTU-based
assessment of biodiversity.

The Bird’s Head Peninsula of West Papua (eastern Indone-
sia) is located in the centre of the Coral Triangle, which is
known to host the world’s richest marine biodiversity
[15,16]. The current checklist of coastal fishes in the Bird’s
Head Peninsula identifies 1611 species belonging to 508
genera and 112 families [15,17], among which some are still
poorly described or under severe threat [18–20]. Providing a
blind but accurate assessment of the level and composition
of a well-known vertebrate diversity from eDNA OTUs is
thus a critical step in conservation, biogeography and ecology,
particularly in such biodiversity hotspots.

Here, using eDNA metabarcoding from 92 seawater
samples across the Bird’s Head Peninsula, we (i) assessed the
diversity of coastal fish species based on an online reference
database for the teleo primers region of the 12S mitochondrial
rDNA gene [21], (ii) estimated the diversity of fish OTUs based
on a custom filtering and clustering bioinformatic pipeline,
and (iii) tested the capacity of OTU accumulation curves to
predict the level and composition of regional fish diversity.
2. Methods
(a) Sampling area and protocol
A total of 92 water samples were collected during October and
November 2017 along the south coast of the Bird’s Head region
of West Papua (500 km) across different habitats but mainly
coral reefs (electronic supplementary material, figure S1). Samples
were collected in DNA-free plastic bags at the surface from a
dinghy boat, at depths between 10 and 100 m during close circuit
rebreather dives and at depths between 100 and 300 m using
Niskin water samplers. A pressure and temperature sensor was
coupled to the Niskin bottle to control the sampling depth and
characterize the water mass via the vertical temperature profile.
For each sample, 2 l of seawater was filtered with sterile Sterivex
filter capsules (Merck Millipore; pore size 0.22 μm) using
disposable sterile syringes. Immediately after, the filter units
were filled with lysis conservation buffer (CL1 buffer SPYGEN)
and stored in 50 ml screw-cap tubes at −20°C. A contamination
control protocol was followed in both field and laboratory stages
[21,22]. Water sample processing included the use of disposable
gloves and single-use filtration equipment, and the bleaching
(50% bleach) of Niskin water sampler.
(b) DNA extraction, amplification and high-throughput
sequencing

The DNA extraction and amplification were performed following
the protocol of [23], including 12 separate PCR amplifications per
sample (see electronic supplementary material for more details on
the protocol). A teleost-specific 12S mitochondrial rDNA primer
(teleo, forward primer-ACACCGCCCGTCACTCT, reverse primer
-CTTCCGGTACACTTACCATG [21])was used for the amplification
of metabarcoding sequences, generating 63 ± 3pb (mean ± s.d.) long
amplicons for all fish species referenced in EMBL database (Euro-
pean Molecular Biology Laboratory, www.ebi.ac.uk, v. 138,
downloaded on January 2019) [24]. Eight negative extraction con-
trols and two negative PCR controls (ultrapure water) were
amplified (with 12 replicates as well) and sequenced in parallel to
the samples to monitor possible contaminations. The teleo primers
were 50-labelled with an eight-nucleotide tag unique to each PCR
replicate with at least three differences between any pair of tags,
allowing the assignment of each sequence to the corresponding
sample during sequence analysis. The tags for the forward and
reverse primers were identical for each PCR replicate.

The purified PCR products were pooled in equal volumes, to
achieve a theoretical sequencing depth of 1 000 000 reads per
sample. Library preparation and sequencing were performed at
Fasteris (Geneva, Switzerland). A total of five libraries were pre-
pared using the MetaFast protocol (Fasteris, https://www.
fasteris.com/dna/?q=content/metafast-protocol-amplicon-meta-
genomic-analysis), a ligation-based PCR-free library preparation.
A paired-end sequencing (2 × 125 bp) was carried out using an
Illumina HiSeq 2500 sequencer on three HiSeq Rapid Flow Cell
v. 2 using the HiSeq Rapid SBS Kit v. 2 (Illumina, San Diego,
CA, USA) following the manufacturer’s instructions.
(c) Sequence analyses and taxonomic assignment
To evaluate the current completeness of the online database for
the teleo region of the 12S mitochondrial DNA, an in silico
PCR with 3 allowed mismatches using the teleo primers
sequences was performed with ecoPCR [25] on the EMBL data-
base. The generated list of sequenced species was compared
with the checklists of fish species present in the Bird’s Head
region of Papua, provided by courtesy of Kulbicki et al. [17].

The amplified DNA sequences from the water samples were
processed following two metabarcoding workflows. The first
workflow used the OBITools software package [26] based on
direct taxonomic assignment of the sequences using the ecotag
lower common ancestor algorithm in EMBL database as a
reference (see details in electronic supplementary material).

The ecotag algorithm can sometimes wrongly assign sequences
to a given species or genus, despite a low-similarity percentage due
to the incompleteness of reference database.We thus set the follow-
ing similarity thresholds, 100–98, 90–98, 85–90 and 80–85% bp to
assign sequences at the species, genus, family and order level,
respectively. All the assignments with a similarity percentage
lower than 80% were discarded from the analyses.

We evaluated the database completeness for the marker by
running an in silico PCR on all fish mitochondrial DNA present
in EMBL online database. A total of 394 species are sequenced
in the Bird’s Head region (24.5%, electronic supplementary
material, table S1).

The second metabarcoding workflow was based on the
SWARM clustering algorithm that groups multiple variants of
sequences into OTUs [12]. Then, a post-clustering curation algor-
ithm (LULU) was performed to curate data (see details in
electronic supplementary material).

The SWARM clustering workflow was used to investigate the
taxa present in the samples but not revealed by the taxonomic
assignment process because of gaps in the EMBL database. The
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number of taxa assigned in each family was corrected to avoid
taxonomical redundancy assignment. For instance, the combined
assignments to the genus Zanclus and the species Zanclus cornu-
tus were considered as one taxa as potential PCR error may have
produced two different assignment levels from the same
sequence. These corrected numbers of taxa were then compared
to the number of OTUs from the SWARM workflow in each
family to evaluate the magnitude of the diversity missed by
the direct assignment method. In the SWARM workflow, a
family-level assignment was performed as well to remove the
taxa that were not fish from non-specific amplifications and
investigate the intrafamily diversity.

(d) Statistical analyses
To evaluate the number of taxa/OTUs present in the study area,
a multi-model approach was implemented to fit asymptotes on
the species and OTU accumulation curves. This approach con-
sidered five different accumulation models (Lomolino,
Michaelis–Menten, Gompertz, asymptotic regression and logistic
curve) and weighted them using the Akaike information cri-
terion (AIC) [29]. For each curve, the accumulation model with
the lowest AIC was selected. Accumulation curves and associ-
ated asymptotes were generated using the vegan R package. To
estimate the sampling effort required to achieve a given pro-
portion of asymptotes, we considered the model selected for
accumulation curves. Then, we extracted the predicted number
of samples producing a number of taxa/OTUs that outreached
90% and 95% of the asymptotes.
3. Results
(a) High heterogeneity of fish species detection among

families
A total of 299 479 007 readswere produced using the OBITools
pipeline over the 92 eDNA samples corresponding to 14 423
unique sequences with a mean of 307 unique sequences per
sample (± 134 s.d.). In a conservative approach, stringent
bioinformatic filters retained 9345 unique sequences, so 65%
of the total. These 9345 unique sequences were then assigned
to different taxonomic levels using the following genetic simi-
larity thresholds: 98–100% for species, 90–98% for genus,
85–90% for family and 80–85% for order. This set of thresholds
retained 7389 unique sequences resulting in 678 taxonomic
assignments (electronic supplementary material, table S2).

A total of 310 species were detected, including 211 coastal
fish species present in the checklist of the Bird’s Head Peninsula
and 99 fish species present in other regions but absent from this
checklist (figure 1a). Conversely, 183 sequenced fish species
which are present in the Bird’s Head Peninsula were not
detected in our eDNA samples using our stringent filters, repre-
senting 53.6% of the sequenced species present in the checklist.
Since 75.5% of fish species in the checklist of the Bird’s Head
Peninsula were not sequenced for the 12S rDNA, the largest
part of fish species diversity remained hidden through direct
assignment (electronic supplementary material, table S1).

A total of 282 genera and 128 families of fish were
detected compared with the regional checklist of 508 genera
and 112 families out of which 46.1% and 72.3% are
sequenced, respectively (electronic supplementary material,
table S1). The number of fish species per family varied
from 1 to 191 in the Bird’s Head checklist (figure 1b), the rich-
est family being the Gobiidae. Only 12 species of Gobiidae
were detected in our 92 samples. Meanwhile, the most
represented family in the eDNA samples was the Labridae
with 48 species (15.5% of the species found in the samples)
out of 136 in the checklist (figure 1b).

The percentage of fish species sequenced per family
varied between 0 and 100% with a mean of 40.3% (±31%
s.d) in the Bird’s Head Peninsula checklist while the percen-
tage of detected species per family varied between 0 and
100% with a mean of 27.1% (±30.2% s.d.) in eDNA samples
(figure 1b). These two percentages were significantly and
strongly related ( p < 0.001) with the percentage of species
sequenced per family explaining 85% of variation in the
percentage of detected species per family (figure 1c).

(b) High but underestimated diversity of operational
taxonomic units

Given that the low percentage of fish species sequenced for the
12S in the region is the main limitation to detect taxonomic
diversity (figure 1c), we used an alternative approach based
on unique clusters of genetic sequences called OTUs.

From the 331 839 591 initial reads, 4012 OTUs were gener-
ated using the SWARM clustering algorithm. After a series of
post-clustering curation processes, 972 fish OTUs were filtered
among which 819 were assigned to a family (electronic sup-
plementary material, table S3). The number of detected
OTUs varied from 1 to 54 among fish families (figure 2a), the
richest families (greater than 50 OTUs) being the Gobiidae,
Labridae and Pomacentridae. Overall, the number of OTUs
was superior to the number of assigned taxa (genus and
species) in 64.7% of the families found in the samples (mean
Δ = 4 ± 6.7 s.d., figure 2a). This richness difference was null in
31.4% of the families and negative in 3.9% of them (figure 2a).
This difference was notably high in some rich families such as
the Gobiidae and Pomacentridae where the number of OTUs
was more than 2 times and 1.5 times higher than the number
of assigned taxa, respectively. By contrast, only 7 OTUs were
produced compared with 11 assigned taxa for the Scombridae
so Δ =−4 units or −66.7% of this family richness.

The discrepancy between the two approaches (taxa and
OTUs) was not significantly explained neither by the species
richness of the family in the checklist (R² < 0.01, p = 0.08,
figure 2b) nor by the percentage of sequenced fish species
within each family in the checklist (R² = 0.09, p = 0.05, figure 2c).

On average, the number of OTUs underestimated the total
number of coastal fish species in the Bird’s Head Peninsula
checklist with a mean net difference of 40.2% per family (±
38.8% s.d., figure 2d ). For most families, this difference was
high, reaching themaximum value of 95% for the Pseudochro-
midae. However, this difference could also be negative with
more OTUs detected than species present in the checklist as
for the Dasyatidae, Leiognathidae and Orectolobidae for
which this difference reached −50%. Overall, the difference
wasmarginally but significantly explained by the species rich-
ness of the family in the regional checklist (R² = 0.09, p = 0.04,
figure 2d ), suggesting that the bias is not proportional to the
species richness of the family with species-rich families being
more underestimated by OTUs than species-poor families.

(c) Prediction of fish species diversity from operational
taxonomic unit accumulation curves

Since the two approaches (taxa and OTUs) underestimated the
level of taxonomic diversity within fish families with a high
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(Online version in colour.)
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uncertainty, we modelled accumulation curves from the diver-
sity of species and OTUs found across our 92 samples. The
modelled asymptote of the assigned species reached 429
species, a value very close to the 394 sequenced species present
in the Bird’s Head Peninsula, but 3.7 times lower than the 1611
species in the regional checklist (figure 3a). Meanwhile, the
OTU accumulation curve reached an asymptote of 1531; a
value close (95%) to the number of fish species (1611) referenced
in the checklist of the Bird’s Head Peninsula.

Applying this method to the 15 fish families which
counted more than 10 OTUs and 10 species in the checklist
permitted to assess the ability of eDNA-based accumulation
curves to predict regional fish richness. For instance, the
OTU accumulation curves for the Gobiidae, Labridae and
Pomacentridae, the three richest families (51, 54 and 53
OTUs, respectively), produced asymptotes and thus predic-
tions of fish diversity much lower than those in the regional
checklists with 107.5, 66.1 and 76.2 OTUs (i.e. 47.5%, 81.7%
and 69.6% of the checklist richness respectively; figure 3b–d).

We then tested the ability of the assigned taxa, the OTUs
and the OTU accumulation curve approaches to predict fish
species richness within families of the regional checklist, so
the predictive power of linear or proportional relationships.
The total number of assigned taxa per family in our samples
was a significant but weak predictor of the number of fish
species per family in the checklist (R² = 0.60, p < 0.001,
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figure 4a) with the richness of some families being largely
underestimated (e.g. 87.4% of net difference with the checklist
for the Gobiidae, figure 4a,d). The number of OTUs per family
was a better predictor of the family species richness in the
checklist (R² = 0.80, p < 0.001) but left 20% of unexplained
variation among families with still a marked underestimation
(73.3% of net difference with the checklist for Gobiidae,
figure 4b,e). Using the asymptotes of OTU accumulation
curves, we obtained a high predictive accuracy of R2 = 0.92
( p < 0.001) for the species richness within families with
less bias for the Gobiidae (43.7% of net difference with the
checklist) (figure 4c,f ).

In addition, we observed that the net difference between
the number of assigned taxa per family and the number of
species per fish family in the checklist is not related to the
number of species of the families (figure 4d ), suggesting an
absence of systematic bias towards the underestimation of
species-rich families. By contrast, the net difference between
the number of OTUs per fish family and the number of
species per family in the checklist significantly increased
(R2 = 0.35, p = 0.02) with the number of species per family
(figure 4e). This bias towards the underestimation of species
richness within species-rich families is nonetheless avoided
when using the asymptotes of OTU accumulation curves
( p = 0.24, figure 4f ). Thus, asymptotes of OTU accumulation
curves are most accurate and least biased eDNA-based pre-
dictors of fish species diversity within families in this
marine biodiversity hotspot.
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(d) Sampling efforts necessary to achieve regional fish
diversity inventory

Not only the OTU accumulation curves and their asymptotes
provide diversity estimates, they also provide crucial insights
into the sampling effort needed to achieve a more complete
census. Here, using the asymptote on the OTU accumulation
curve for all fish species (figure 3a), we found that our 92 cumu-
lated samples (representing 0.2 m3) achieved up to 63.5% of the
potential fish OTU diversity in the Bird’s Head Peninsula
(figure 5). To collect 90% of this regional fish diversity, we
should have filtered seawater in 735 samples, so eight times
the effort of our sampling campaign, representing an aggregated
sampled water volume of 1.5 m3. This sampling effort would
reach 1883 samples (an aggregated water volume of 3.8 m3) to
collect 95% of the regional fish OTU richness (figure 5).

On average across fish families, our sampling effort
achieved the detection of 77.1% (±14.9 s.d.) of OTUs predicted
by the asymptote of the accumulation curve with a variation
among families ranging from 42.2% (Muraenidae) and 47.5%
(Gobiidae) to 93.9% (Balistidae) (figure 5). The sampling
effort needed to achieve 90% of the asymptotic number of
OTUs in the region varied greatly among families, ranging
from 37 samples for Chaetodontidae to 494 samples for Gobii-
dae, with a mean of 164 samples (±123 s.d.). The estimated
additional sampling effort to reach 95% from 90% of the
OTU richness ranged from 20 more samples (Tetraodontidae)
to 593 more samples (Gobiidae).
4. Discussion
(a) Overcoming incompleteness of genetic reference

databases
Environmental DNA metabarcoding has the potential to sur-
pass most classical survey methods to assess biodiversity in
both terrestrial and aquatic systems [30]. Yet, genetic reference
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databases are often incomplete, especially for species-rich
ecosystems such as the Coral Triangle, a global marine biodi-
versity hotspot [14]. For instance, the current completeness
of the 12S rDNA online databases for the teleo primer covers
only 24.5% of fish species in the Bird’s Head Peninsula. Mean-
while, this cover reaches 77.3% for the COI (mitochondrial
cytochrome c oxidase subunit I), but fish COI primers still
perform poorly in comparison to 12S markers [31].

With around 28% of families, 54% of the genera and 76% of
species not sequenced for the 12S rDNA teleo primers region,
the largest part of fish diversity in the Bird’s Head Peninsula
remains thus hidden through direct assignment. Additionally,
sequences present in the reference online databases may have
been collected from individuals not located in the region of
interest. This can induce assignment errors due to biogeo-
graphic-related genetic variation (e.g. [32]). The lack of
sequencing coverage highlights the immense gap to be filled
for online databases to be exhaustive, while numerous species
still remain to be described [33]. This limitation prevents meta-
barcoding approaches from characterizing entire fish
assemblages through direct species assignment. Yet, the taxa-
assignment method reveals the presence of 211 fish species
referenced in the checklist of coastal fishes in the Bird’s Head
Peninsula (figure 1a). Conversely, 99 assigned species were
absent from this checklist. These 99 detections can either be
true presences extending the distribution of some species and
revisiting the regional checklist or false presences due to
wrong assignments or possible contaminations. For instance,
the Atlantic salmon (Salmo salar), probably a laboratory kit con-
taminant, was found in our study and removed from the
analyses (see Methods). The large number of species present
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in the samples but absent from the regional checklist suggests
that inventories of some families are still incomplete. On aver-
age, 2.5 detected species per family (±2.6 s.d., figure 1b) are
absent from the checklist, ranging from 0 to 14 species (Apogo-
nidae). This mismatch allows us to target future sampling
efforts towards families and their habitats to complete the
regional checklist.

As an alternative to species assignment, the use of OTUs
as species proxy units is an option that has not yet been tested
for vertebrates in species-rich ecosystems while currently
used when the concept of species is debatable like for fungi
or unicellular organisms [34,35].

Here, using a conservative and stringent bioinformatic
pipeline, we show that the diversity of OTUs is a weak and
biased estimator of species diversity with species-rich
families being strongly underrepresented. To overcome this
limitation, we propose to rely on OTU accumulation curves
which provide an unbiased estimate of regional fish diversity
and fish richness within families. The asymptotes underesti-
mate the regional fish species richness, but the bias is
highly consistent among families (figure 4f ). We thus pro-
pose to extend this method for taxonomic inventories in
poorly sampled ecosystems like the deep sea to estimate the
diversity at different taxonomic levels.

(b) Revealing the potential and limitation of eDNA
metabarcoding inventories

Fishes are the most diverse group of vertebrates on Earth
with varying body sizes, environmental niches and diets.
Monitoring fish assemblages in marine biodiversity hotspots
like the Coral Triangle is a great challenge, particularly for
small, rare, cryptobenthic or elusive species. Here, we show
that the percentage of sequenced species is highly variable
among families preventing any robust estimation of species
richness. Instead, OTUs have the potential to reveal the pres-
ence of a broad range of fish species (i.e. from different
lineages and with contrasted life-history traits). For instance,
cryptobenthic families have been poorly documented and are
often ignored in traditional visual censuses [7], while they
strongly influence ecosystem functioning [13]. Similarly, tra-
ditional visual censuses often miss highly mobile and
elusive species such as sharks [9].

Among the 310 assigned fish species, we detected the pres-
ence of small cryptobenthic species such as Gobiodon histrio or
Ostorhinchus selas, a goby and a cardinalfish with a maximum
length below 40 mm, respectively. We also detected large pela-
gic fish such as the dogtooth tuna (Gymnosarda unicolor) or the
thresher shark (Alopias pelagicus) reaching over 2 m and 4 m
long, respectively. Flagship species for conservation were
also present in our DNA samples such as the over-exploited
Napoleon wrasse (Cheilinus undulatus, Endangered, IUCN
Red List, www.iucnredlist.org), the Scalloped hammerhead
shark (Sphyrna lewini, Endangered) and several shark species
being classified as Near Threatened (NT) (C. brevipinna,
C. Leucas, C. sorrah, C. melanopterus, T. obesus).

Even if not assigned at species level, OTUs can be defined
as distinct entities for which their distribution and temporal
variability can be assessed and monitored [36]. Moreover,
the OTUs and their associated sequences can remain in
public repositories until they are assigned to a species, sub-
species or complex as databases improve [37]. However, the
major caveat of using OTUs for diversity inventories is that
they cannot be directly considered as species with complete
certainty. Species with intra-specific genetic variability can
produce two separate OTUs, overestimating species diversity.
Conversely, two species phylogenetically close to each other
with low genetic variability can be grouped into a single
OTU, thus underestimating species diversity. The accuracy
of diversity inventories using eDNA metabarcoding is thus
directly based on the taxonomic resolution of the barcode
used and genetic variability among families but also the
number of samples.

Here, we also reveal the gap of biodiversity that remains to
be detected using OTU accumulation curves. The effort can be
massive for some families (figure 5) and more ambitious eDNA
sampling campaigns should be on the agenda in species-rich
regions like the Coral Triangle. OTU accumulation curves can
also serve to evaluate the efficiency of a sampling method
(e.g. punctual filtration, transect filtration), the sampled area
or the diversity of habitats that are required (e.g. depth, com-
plexity, distance from the seafloor) and their location (e.g.
proximity of reefs, hotspots) especially when targeting rare,
elusive, highly mobile or cryptobenthic families of fish.

The contrasts between assigned taxa diversity, OTU diver-
sity and OTU asymptote diversity show that the detectability
varies strongly among fish families. These contrasts can be
related to the ecology of the species but also to the state of
the retrieved DNA fragments (intra or extracellular), their
sources (e.g. gametes, larvae, faeces), their release rate,
their diffusion in the water column (limited or wide) and
their transportation [38]. For instance, benthic fish species
such as gobies with a small movement range would release
DNA fragments through skin and faeces on a small area.
However, such species could release a massive number of
gametes carried through the water column [13] so may
appear highly detectable during breeding season. Further
comparative works are urgently needed between visual,
camera and eDNA metabarcoding surveys to better estimate
the level of detectability of each species or family in order to
provide reliable biodiversity assessments. For instance, coup-
ling eDNA metabarcoding and video surveillance allows the
detection of 82 fish genera from 13 orders on reefs and sea-
grass with only 24 genera in common [39]. Investigating
biodiversity should also consider its multiple components
including functional and phylogenetic diversity that are key
for reef ecosystem functioning [40]. Associating OTUs to
species might allow us to fill this gap, but it will require mas-
sive sampling and sequencing efforts.
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