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Abstract

Motivation: Phylogenetic placement (PP) is a process of taxonomic identification for which several tools are now available.

However, it remains difficult to assess which tool is more adapted to particular genomic data or a particular reference

taxonomy. We developed PEWO, the first benchmarking tool dedicated to PP assessment. Its automated workflows can

evaluate PP at many levels, from parameter optimisation for a particular tool, to the selection of the most appropriate genetic

marker when PP-based species identifications are targeted. Our goal is that PEWO will become a community effort and a

standard supportred for future developments and applications of PP.

Availability: https://github.com/phylo42/PEWO

Contact: benjamin.linard@lirmm.fr; rivals@lirmm.fr

Supplementary : Supplementary data is available at page 4.

1 Introduction

When a reference phylogeny is available, taxonomic identification of

biological sequences can be achieved with phylogenetic placement (PP).

PP provides the most informative type of classification because each query

sequence is assigned to its putative origin in the tree. PP can be applied in

many contexts, including community ecology, species diversity, ormedical

studies. Several PP tools were developed for these purposes (Matsen et al.,

2010; Berger et al., 2011; Mirarab et al., 2012; Zheng et al., 2018), with

four recent tools capable of processing larger sequence volumes (Barbera

et al., 2018; Linard et al., 2019; Czech and Stamatakis, 2019; Balaban

et al., 2020). In the preliminary phase of experimental design, assessing

which tools answer the needs of a given application remains a tedious task

often involving manual tests (Mangul et al., 2019). Strikingly, PP has a

broad range of applications, but lacks user guidelines and benchmarking.

Some procedures to evaluate PP accuracy were proposed (Matsen et al.,

2010), but never automated via a dedicated software. Benchmarking is

essential to determine which tool suits better a given metagenomic task or

a specific dataset (Sczyrba et al., 2017).

To fill this gap, we developed PEWO (Placement Evaluation

WOrkflows), the first tool dedicated to PP benchmarking. PEWO

automatizes evaluation procedures (which were not implemented for the

community), and introduces novel procedures. Beyond benchmarking,

PEWO can help decision-making in any metagenomic or metabarcoding

project for PP-based taxonomic identification. With applications ranging

fromparameter optimization on particular genomic data, to the selection of

the most appropriate genetic marker, PEWO provides the user community

with standardized workflows for easy and reproducible assessment of PP

analyses.

2 Overview

PEWO implements evaluation workflows in Python and Snakemake

(Köster and Rahmann, 2012), whose framework ensures flexibility,

platform independence, and reproducibility. Each workflow automatically

performsmultiple steps from query generation up to summary plots/tables,

and can be tailored via Snakemake configuration files. PEWO and

its dependencies are easily installed via a conda virtual environment.

Currently, PEWO incorporates five state-of-the-art PP tools, which cover

a majority of PP uses: EPA(RAxML), PPlacer, EPA-ng, RAPPAS and

APPLES. Four are alignment-based tools, while RAPPAS is alignment-

free. As input, each workflow takes a phylogenetic tree and the reference

multiple sequence alignment fromwhich itwas built (Figure 1). Optionally,

the user can provide a set of query sequences. Below we describe the

workflows and some of their applications.

2.1 PEWO procedures

• Pruning-based accuracy evaluation (PAC): in this standard procedure

for assessing placement accuracy (Matsen et al., 2010; Berger et al.,

2011), a subset of sequences is randomly pruned from the reference

phylogeny and alignment. Each pruned sequence then serves to

generate queries for placement, and the accuracy of each tool

is measured in number of nodes separating predicted from true

placement. PEWOoffers two versions of this topological metric: Node

Distance (ND) and expected Node Distance (eND). The eND accounts

for placement uncertainty (e.g. likelihood weight ratios). All selected

tools are compared for a user-selected combination of parameters.

• Likelihood-based accuracy evaluation (LAC) is a new, faster

evaluation procedure introduced in PEWO to assess relative accuracy

of PP. It iterates the following process for a set of queries: place the

query, extend the phylogeny to include that query, optimize the branch

lengths of this extended tree, and return its log-likelihood (LL). The

user can then compare the LL values obtained with different tools, or

different settings of a same tool (e.g. by inspecting the distribution of
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Fig. 1. A. Overview of PEWO inputs and outputs. B. An example of plots dynamically-generated by the PAC (Pruning-based Accuracy Evaluation) procedure on a 16S rRNA bacterial

reference. Measured Mean expected Node Distances (eND) are reported (lower value = better accuracy). Panels report selected conditions for PPlacer and RAPPAS, e.g. different parameter

values tested in different rows and columns. For PPlacer, varying parameters are ms (max-strikes, X axis) and sb (strike-box, Y axis). Parameter mp (max-pitches, grey box) is fixed. For

RAPPAS, varying parameters are k (phylo-kmer size) and o (omega threshold). Parameters red (alignment reduction) and ar (software used for ancestral reconstruction) are fixed. C.

Four PAC procedures were run for different Coleopteran mitogenome loci (rows) and compiled. Average expected Node Distance (eND) is measured for three tools (columns) using default

parameters. For each locus, the lowest average eND is highlighted in bold. For RAPPAS, the last column shows that accuracy can be improved when increasing k-mer size (default is k=8).

Examples B. and C. are more extensively discussed in Supplementary Materials.

the differences between LL values obtained with two different tools).

See the Supplementary Materials for a more detailed description.

• Resource evaluation (RES): outputs the runtime and memory usage

of selected tools, with details for each placement step (e.g., profile

alignment, database construction, placement...). One can compare the

impact on time and memory for tool-specific parameter combinations,

while searching for an appropriate accuracy/resource trade-off, or

evaluate the tools’ scalability with respect to input size.

2.2 Applications

PEWO procedures cover numerous use cases arising with PP, as illustrated

by six exemplar applications provided on GitHub (two are reported in

Figure 1B-C). As new PP tools can be incorporated in PEWO, PEWO

procedures enable comparing existing and future tools on resource usage,

scalability, or accuracy in a reproducible way. With PEWO, users can

optimize their PP pipeline design. For instance, for a given reference (tree

and alignment), determine which tool and parameter combination will

maximize placement accuracy, and at which computational cost. PEWO

facilitates such tests, as in Figure 1-B,which shows two plots automatically

generated by the PAC procedure running PPlacer and RAPPAS for 9 and

6 parameter combinations, respectively.

As a second example, we show how PEWO can be used to compare

different genetic markers available for the same taxa, as the choice of the

marker may impact the accuracy of placement. For example, we evaluated

the placements for four loci (16S, 12S, cox1, cyt) on their associated

phylogeny for 900 Coleopteran mitochondrial genomes (Linard et al.,

2018). Figure 1-C displays the results (reproducible viaGitHub example 4)

highlighting that: i) 12S yields themost accurate placements, despite being

the second shortest locus, ii) the tool achieving the best accuracy depends

on the marker, and iii) with RAPPAS, a longer k-mer size is required to

obtain accuracy similar or better than alignment-based methods.

2.3 Availability and implementation

PEWO, with full documentation and example workflows, is freely

available from its repository URL: https://github.com/phylo42/PEWO.

Its modular, well-documented, and evolvable source code enables the

community to easily extend it by adding new tools, procedures, or metrics.

Notably, users can develop their own evaluation procedures starting from

PEWO Snakemake rules as templates for their own workflows. Any PP

tool can be integrated as long as it outputs results in jplace format (a

json specification, standard in PP, see (Matsen et al., 2012)), can be

parameterized via the command line, and is available on a conda or pip

repository (see the documentation for guidelines).

3 Conclusion

Reproducibility of computational analyses in life sciences is a crucial

issue, even more when large scale data comes into play, as in the case

of metagenomics. With PEWO, we provide a resource that facilitates the

evaluation and comparison of PP tools under a unified framework. It allies

flexibility, extensibility, with ease of use, while it inherits a standardized

installation procedure from the conda framework. The set of workflows in

PEWO aims to grow as a community effort, and extensions are welcome.

In PEWO,we introduce a likelihood-based accuracy evaluation procedure,

which is complementary to existing procedures (Matsen et al., 2010).

PEWO will help the community in its efforts to develop future PP tools

and will facilitate experimental decisions when PP is chosen as a means

to species identification. With the help of future contributors, we hope

that PEWO will evolve as a standard for PP benchmarking, and answer

forthcoming unforeseen yet auspicious applications.
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Likelihood-based accuracy evaluation (LAC) 

This procedure is another way of testing and comparing phylogenetic placement tools. Each             

tested reference dataset consists of a reference alignment (​refA​), a reference tree (​refT​), and a               

dataset of query sequences (​QS​). In the PEWO LAC procedure, the following steps are              

repeated for every input parameter combination of every tested tool, where ​Q ​i ​denotes the ​i​-th               

sequence in ​QS​: 

1. Align each query ​Q ​i​ ​against ​refA​ independently, obtaining alignments ​A​i ​. 

2. Perform the necessary steps to place the query sequences ​QS to the ​refT ​. These steps               

may vary depending on the tested tool. To place ​Q ​i into ​refT using alignment-based              

tools, ​A​i​ is used. The result of this step is a collection of placements of ​QS ​. 

3. For every ​Q ​i​, take the placement branch ​P(Q ​i​) with the highest value of likelihood              

reported by the tool. Create an extended tree ​T ​i by modifying ​refT ​as follows. Create a                

new node in ​T ​i by splitting branch ​P(Q ​i​) in two branches. Attach to this new node a                 

new terminal branch leading to a leaf labelled by ​Q ​i​. 

4. Reoptimize branch lengths and calculate the LogLikelihood (​LL ​i​) of ​T ​i​: 

> raxml-ng --evaluate --msa ​A​
i​
 --tree ​T​

i​
 --model MODEL --redo 

Use the MODEL parameter given by the user in a config file. 

In the end, the vector containing all the ​LL ​i values can be used to compare the performance of                  

different PP tools and/or their input parameter combinations.  

For example, if ​LL ​i​(EPAng) and ​LL ​i​(RAPPAS) denote the values obtained while using            

EPAng and RAPPAS, respectively, a user can inspect the distribution (via           

histograms/boxplots etc.) of ​LL ​i​(EPAng) - ​LL ​i​(RAPPAS). 

 

 

1 



Comments on the ND and eND metrics 

The ND (Node Distance) and eND (expected Node Distance) metrics were originally            

described in detail in the original papers of PPlacer ​(Matsen ​et al.​, 2010) and EPA ​(Matsen ​et                 

al.​, 2010; Berger ​et al.​, 2011) ​. Below is a rapid description of their difference. 

 

Difference between ND and eND metrics (PAC procedure): 

Both metrics are topological measures which report, for each placed query, the number of              

tree nodes that separate an ​observed ​placement (e.g. the branch associated to the best              

likelihood, which is the best placement) and an ​expected placement (defined as the branch              

from which taxa were pruned by the pruning procedure). For instance, consider this simple              

tree of 2 internal nodes (black dots) and 5 branches labelled ​b1 to ​b5 . The ND between                  

observed and ​expected placement is 2 (whatever the position of the placements along             

branches ​b1 ​ and ​b5 ​) : 

 

 

 

For each placement, likelihoods are computed for more than one branch of the tree. In               

general, phylogenetic placement tools report not only the branch of best likelihood, but the ​n               

branches associated to the top ​n best likelihoods. Thus, a “placement” can be seen as a                

distribution of likelihoods observed in one more than 1 branch. A statistic called the              

Likelihood Weight Ratios (LWR) is associated with each branch to take into account the              

relative difference observed between these likelihoods and can be seen as a measure of              

uncertainty of the placement. 

For instance, considering ​n​=3 (e.g. likelihoods and corresponding LWR are output for the top              

3 best likelihoods) we observe the likelihoods and LWR, with ​L ​b1 being the likelihood of a                

placement on branch ​b1 and ​LWR​b1 the corresponding LWR ratio (red circles illustrate the              

LWR difference) : 

2 



 

 

In this particular example, it seems that ​b1 is by far the best placement, and the ND and the                   

eND are relatively equivalent (2 nodes separate ​observed and ​expected placements). The            

corresponding eND of this placement is : 

ND ND ) / (LW R ) e = ( b1 × LW Rb1 + NDb2 × LW Rb2 + NDb3 × LW Rb3 b1 + LW Rb2 + LW Rb3  

= 1.997ND 2 .987 .01 .003) / (0.987 .01 .003) e = ( × 0 + 2 × 0 + 1 × 0 + 0 + 0  

 

Now consider this alternative situation: 

 

 

 

The likelihoods associated with ​b1 and ​b3 are relatively similar, which is reflected in their               

LWR values. Said otherwise, while ​b1 was chosen is the best placement, it appears ​b3               

remains a decent branch for placement. However, choosing branch ​b1 or ​b3 would result in               

different ND values (2 and 1 respectively). The usefulness of the eND measure lies in its                

ability to take into account this uncertainty by weighting the NDs by their associated LWR.               

For this second example: 

= 1.64ND 2 .4 .24 .36) / (0.4 .24 .36)  e = ( × 0 + 2 × 0 + 1 × 0 + 0 + 0   

 

Recommendations for using the ND and eND metrics (PAC procedure): 

 

A first intuition would be that the eND is a better accuracy measure than the ND as it                  

considers the placement uncertainty represented by relatively similar likelihoods associated to           

different branches (see previous paragraph). However a few remarks must be made.            
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Considering the state of current placement tools (June 2020), we would make the following              

recommendations: 

● APPLES can output only one branch per placement (the one associated with the best              

score) and LWR values are consequently always equal to 1 for the single placement              

branch. Until APPLES allows output more branches per placement, using the ND            

metric would be more fair in experiments targeting tool comparisons. 

● When comparisons involve other software (EPA-ng, PPlacer, RAPPAS and not          

APPLES), using the eND is applicable, because all these tools can output several             

branches per placement (and corresponding LWR are different). 

● When comparing tools, it is recommended that they output the same amount of             

branches per placement. In practise, EPA-ng, PPlacer and RAPPAS command-lines          

already share the same default output configuration (maximum 7 branches per           

placement and only those associated to a LWR > 0.01). 

 

Currently, writing more recommendations on the usage of these metrics is difficult as these              

measures have been developed specifically for the first manuscript of phylogenetic placement            

and, so far, were exploited in a limited number of manuscripts and on limited number of                

datasets (moreover, the same datasets are used in these manuscripts). 
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Comments on results of Figure 1-B and 1-C 

Figure 1B: Example of plots produced by the PAC procedure 

 

This figure can be reproduced by following the example 2 of the PEWO wiki: 

https://github.com/phylo42/PEWO/wiki/IV.-Tutorials-and-results-interpretation#example2 

The details about the configuration of the pipeline is already detailed in this online tutorial               

and the present section will focus on the interpretation of the results.  

 

Warning: note that this plot was generated from a toy example of the PAC procedure limited                

to 10 prunings (for fast tutorials). This configuration is not necessarily representative of the              

actual accuracy of the tools. A better approach would be to configure the PAC procedure to                

test at least a 100 different prunings, which would ensure to compute both easy (a single leaf                 

is pruned)  and hard (a large subtree is pruned) simulations.  

 

In this example, a phylogenetic tree of bacterial 16S rRNA is used as a reference tree. The                 

goal of running the PAC procedure of PEWO on this dataset is: 

1. To determine which placement software produces, on average, the most accurate           

phylogenetic placements. 

2. For a particular tool, which parameters are optimal. 

PPlacer (an alignment-based approach) is compared to RAPPAS (an alignment-free          

approach) and for sets of 9 (PPlacer) and 6 (RAPPAS) parameter combinations. See PEWO              

wiki for a more detailed explanation about the selected parameters. Accuracy is evaluated via              

the ​expected Node Distance metric (eND). As a reminder, the lower the eND is, the more                

accurate are the placements in the selected conditions.  

Using the plots output by PEWO (Figure 3B), we can observe that: 

● For both methods, measured eNDs are in [2,3], showing that, on average, queries are              

placed on a branch which is 2 nodes away from their expected placements.             

Considering that the corresponding reference tree shows very short branches between           

sister leaves, this is considered as a good accuracy. As a comparison, observe figure 3               

of ​(Linard ​et al.​, 2019) where the measured average NDs are generally above 2,              

whatever the reference tree considered (eNDs were not implemented at that time). 

● For PPlacer, changing the parameters ​ms and ​sb ( ​max-strikes and ​strike-box           

respectively, see Matsen et al, 2010) has a limited impact on placement accuracy, with              

a maximum eND difference of 0.17 between the tested combinations.  

● At the opposite, RAPPAS accuracy is heavily influenced by its parameter ​k (the k-mer              

size) and less by the second tested parameter ​o ( ​omega​, which determines the amount              

of k-mers filtered during database construction). 

● When comparing these methods, it appears that RAPPAS requires a k-mer size > 6 to               

be at least as accurate (​k​=7) or more accurate (​k​=8) than PPlacer on this particular               

dataset. 
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● While not represented in the figure itself but measurable with the RES procedure, one              

would observe that the most accurate configurations for both tools correspond to            

longer computations. In this regard, it appears that playing with the parameters of             

PPlacer can greatly accelerate the placements, while limiting the loss of accuracy. On             

the other hand, RAPPAS is orders of magnitude faster than PPlacer in its placement              

phase but will involve heavier computations when longer k-mer are used at database             

construction.  

 

Figure 1C: Comparing different genetic markers 

 

This figure can be reproduced by following the example 4 of the PEWO wiki: 

https://github.com/phylo42/PEWO/wiki/IV.-Tutorials-and-results-interpretation#example4 

The details about the configuration of the pipeline is already detailed in this online tutorial               

and the present section will focus on the interpretation of the results.  

 

Warning: note that this plot was generated from a toy example of the PAC procedure limited                

to 10 prunings (for fast tutorials). This configuration is not necessarily representative of the              

actual accuracy of the tools. A better approach would be to configure the PAC procedure to                

test at least a 100 different prunings, which would ensure to compute both easy (a single leaf                 

is pruned)  and hard (a large subtree is pruned) simulations.  

 

This example describes a possible application of PEWO procedure that goes further than the              

benchmarking of the placement tools themselves. In applications such as metabarcoding or            

metagenomics, one often has to evaluate which genetic marker is the most adapted to species               

identification in a sample representing a complex environmental community. In particular,           

one could test if different mitochondrial markers (different regions of the mitogenome) will             

produce more accurate species identification when considering a particular reference tree.           

Several PEWO runs, one for the phylogenetic tree built from each marker, can be run to                

answer this question and help early decisions related to experimental design.  

In this particular example, four phylogenetic trees were built for four different regions of the               

same 1000 Coleopteran mitochondria (e.g. each tree is composed by 1000 sequences of the              

same species, data from ​Linard ​et al.​, 2018​). These regions are ​cox1 (full CDS), ​cytb (full                

CDS), ​12S rRNA (full ORF) and ​16S ​rRNA (V2-V3 + V3-V4 regions). By using PEWO, we                

aim to answer the following question: using these particular reference trees, which marker is              

likely to produce the most accurate placements, e.g. species identifications ? 

Note that the answer that will be produced with PEWO is specific to the present reference                

trees. If one builds a new dataset with more species or a different taxonomic composition               

(e.g. a phylogenetic tree with different topology and branch lengths), one should run this              

procedure again (different markers and tools may behave differently at different taxonomic            

scales).  

A run of the PAC procedure is launched for each of the four different reference trees and                 

configured to test three placement tools. It is also configured to test EPA-ng and PPlacer with                
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default parameters and RAPPAS with ​k​=8 and ​k​=10 (many more parameters conditions could             

be tested). The results are reported in Figure 3-C (as a reminder, lowest average eND = best                 

accuracy). They lead to the following results and discussions:  

● When considering all tools and markers, the ​12S reference tree leads to the most              

accurate placements when using PPlacer (eND=4.52). EPA-ng shows a very similar           

accuracy for this marker and RAPPAS shows a lower accuracy for both tested k-mer              

lengths. Still, considering that all trees are built from 1000 species and that whatever              

the tools and locus observed eND are inferior to 12, all methods can be considered as                

relatively accurate (comparatively, similar eND values measured on a tree of only 100             

species would have been a worse accuracy).  

● For ​cox1 and ​cytb, EPA-ng and RAPPAS produce the most accurate placements,             

respectively. This shows that the most appropriate tool may depend on the marker. If              

these alternative markers are selected for the experiments, then the results suggest to             

use  a different tool than for the 12S reference tree (see previous point).

● For this particular set of ​Coleopteran species, average placement accuracy decreases,           

from ​12S​, ​16S ​, ​cox1 to ​cytb​. This shows that the longest marker is not the most                

resolutive when using this particular reference. In fact, this particular mitochondrial           

reference dataset contains a large proportion of sequences belonging to the same            

family (​Curculionidae​). rRNA markers are known for their faster rate of evolution            

which consequently, and despite their shortest length, make them more resolutive for            

species identification at this (relatively) low taxonomic depth.  

● If a metabarcoding approach is envisioned, these results suggest to build an            

experimental design based on the 12S marker, particularly if communities rich in            

Curculionidae family members are targeted in the project, and if the present            

(incomplete) reference database will be the basis for future species identification           

based on phylogenetic placements. Note that this recommendation does not          

necessarily hold for a different reference dataset (for instance, another reference of            

more even Coleopteran family sampling may conclude to the recommendation of           

different marker/tool/parameters). 

Altogether these comparisons emphasized the usefulness of a benchmarking framework like           

PEWO.  
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