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1  |  INTRODUC TION

Environmental DNA (eDNA) metabarcoding is a promising approach 
to identify species within communities and can be used to evaluate 
biodiversity through a variety of estimators (Boulanger et al., 2021; 

Deiner et al., 2020; Pawlowski et al., 2018). The approach is based 
on the collection of environmental samples (e.g., soil, air or water) 
that contain the target organisms’ DNA. After DNA extraction, DNA 
amplification with primers designed for a specific taxonomic group 
is performed and submitted to high-throughput sequencing (Deiner 
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Abstract
Bioinformatic analysis of eDNA metabarcoding data is a crucial step toward rigorously 
assessing biodiversity. Many programs are now available for each step of the required 
analyses, but their relative abilities at providing fast and accurate species lists have 
seldom been evaluated. We used simulated mock communities and real fish eDNA 
metabarcoding data to evaluate the performance of 13 bioinformatic programs and 
pipelines to retrieve fish occurrence and read abundance using the 12S mt rRNA gene 
marker. We used four indices to compare the outputs of each program with the simu-
lated samples: sensitivity, F-measure, root-mean-square error (RMSE) on read relative 
abundances, and execution time. We found marked differences among programs only 
for the taxonomic assignment step, both in terms of sensitivity, F-measure and RMSE. 
Running time was highly different between programs for each step. The fastest pro-
grams with best indices for each step were assembled into a pipeline. We compared 
this pipeline to pipelines constructed from existing toolboxes (OBITools, Barque, and 
QIIME 2). Our pipeline and Barque obtained the best performance for all indices and 
appear to be better alternatives to highly used pipelines for analysing fish eDNA me-
tabarcoding data when a complete reference database is available. Analysis on real 
eDNA metabarcoding data also indicated differences for taxonomic assignment and 
execution time only. This study reveals major differences between programs during 
the taxonomic assignment step. The choice of algorithm for the taxonomic assign-
ment can have a significant impact on diversity estimates and should be made accord-
ing to the objectives of the study.
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et al., 2017; Taberlet et al., 2018). The resulting sequencing data typ-
ically contains millions of amplicon DNA fragments. Bioinformatic 
programs are then used to (i) clean the data, (ii) associate fragments 
to samples when amplicons are pooled in a single library and (iii) 
produce either a matrix of read counts per species occurring within 
each sample using a reference database or a matrix of operational 
taxonomic units (OTUs) occurring within each sample. With decent 
completeness of the genetic reference database, eDNA metabar-
coding can provide accurate representation of the taxonomic com-
position within samples (Djurhuus et al., 2020; Marques et al., 2020; 
Minamoto et al., 2012). Nevertheless, many biases can reduce the 
performance of such approaches which need to be controlled for, 
such as PCR and sequencing errors, gaps in reference databases, 
different species with identical sequences in the amplified region, 
etc. (Kwok & Higuchi, 1989; Schnell et al., 2015; Zinger et al., 2019). 
Several of these biases can be mitigated with posterior bioinfor-
matic analyses by implementing appropriate filters. Yet, comparative 
quantitative analyses are still lacking on the different key steps of 
bioinformatic pipelines.

A literature search with the keywords “environmental DNA”, 
“metabarcoding”, “community”, “bioinformatics analysis” (Method 
S1) identified six steps from raw sequence fragments to final iden-
tifications: paired-end reads merging, demultiplexing, dereplication, 
quality filtering, removal and correction of PCR/sequencing errors 
and taxonomic assignment (Figure 1). The order of those steps can 
vary depending on the pipeline being used. Some of these steps 

can have a strong impact on the resulting taxonomic composition 
and consequently on biodiversity estimation (Bonder et al., 2012; 
Calderón-Sanou et al., 2020). Therefore, choosing the most appro-
priate bioinformatics program producing accurate, fast and sensitive 
taxa identifications is a crucial step (Pauvert et al., 2019). Until now, 
no consensus among existing bioinformatic programs and pipelines 
has emerged to choose the most appropriate for analysing eDNA 
metabarcoding data (Bazinet & Cummings, 2012; Gardner et al., 
2019; Lindgreen et al., 2016; Peabody et al., 2015; Prodan et al., 
2020; Sczyrba et al., 2017; Siegwald et al., 2017). In particular, there 
is no standard or recommendation related to existing programs, 
based on quantitative comparisons, in the context of aquatic eDNA 
data and particularly so for Teleostean fishes.

With more than 32,000 species, Teleostean fishes are the larg-
est group of vertebrates (www.fishb​ase.org). Worldwide, a growing 
number of fish species and populations are threatened and decreas-
ing in size due to overfishing as well as habitat degradation (Yan 
et al., 2021). With more than 60% of the publications on eDNA deal-
ing with vertebrate monitoring, fishes represent the most studied 
group using eDNA approaches (Tsuji et al., 2019). As a result, they 
represent a relevant candidate taxonomic group to compare eDNA 
metabarcoding programs and pipelines.

eDNA metabarcoding based on water samples was first applied 
to monitor fish species both in marine (Thomsen et al., 2012) and 
freshwater environments (Robson et al., 2016). Currently, there is 
increasing interest in this technique for characterizing fish diversity 

F I G U R E  1  Protocol of the step-by-step 
program comparisons. The comparison of 
each program (white boxes) is arranged 
sequentially according to the suite of 
steps in the OBITools pipeline (grey boxes)
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(Berger et al., 2020; Jerde et al., 2019; Juhel et al., 2020; McElroy 
et al., 2020; Sigsgaard et al., 2017) in particular when classical meth-
ods are too invasive or do not perform well, as is the case for rare 
species or those that inhabit the deep sea. Many primer pairs have 
been developed to amplify different mitochondrial DNA fragments 
of fish DNA. The primer pair used in this study (teleo 12S mt rRNA; 
Valentini et al., 2016) is one of the most frequently used and has 
been proven effective in detecting rare biodiversity and discrimi-
nating species in European fluvial ecosystems (Civade et al., 2016; 
Collins et al., 2019; Pont et al., 2019). Since teleo 12S mt rRNA is 
a widely used primer set, it is a good candidate to explore the effi-
ciency of different bioinformatic programs.

In this context, the goals of this study were to: (i) explore com-
mon bioinformatic tools including one-step programs used in the dif-
ferent steps of metabarcoding data analysis and integrated pipelines, 
(ii) assess the ability of these programs to accurately and rapidly re-
trieve the species composition (occurrences and abundances) of rep-
resentative fish communities, and (iii) assemble the best-performing 
programs for each step into a custom pipeline, and compare its per-
formance to three other pipelines designed for metabarcoding anal-
ysis (Barque, OBITools and QIIME2-based) using both simulated and 
real data.

2  |  MATERIAL S AND METHODS

2.1  |  Simulated fish communities

We simulated 29 different species assemblages, hereafter designed 
as “samples”, using the program Grinder (Angly et al., 2012). In 
these samples, the presence of 18 to 51 fish species were included 
(among a variety of cartilaginous and bony fishes: Actinopteri, 
Chondrichthyes, Cladistia, Cyclostomata and Sarcopterygii). Each 
sample was composed of random species from various classes, or-
ders and families. Some samples contained several species belong-
ing to the same genus (samples 3, 4, 6, 14, 19, 21 and 28). Relative 
abundances were attributed to each sequence in a given sample to 
represent real data sets. In sample 1, the most abundant species 
represented 50% of the reads and the other species had decreas-
ing read abundances with each having half as many sequences as 
the previous one. For six samples (2 to 7), species relative abun-
dance were based on real samples from both large and small rivers 
(Cantera et al., 2019; Milhau et al., 2019; Pont et al., 2018) and ma-
rine ecosystems (Polanco Fernández et al., 2020). In samples 9 and 
25, all fish species (30 and 18, respectively) had equal abundance. 
For the other samples, abundances were attributed such that some 
sequences were very abundant and others rare (see Table S1). We 
simulated amplicons of the 26 to 60 bp 12S mt rRNA region contain-
ing the teleo primer. Species composing each sample were selected 
randomly from a custom reference database of 2,070 sequences of 
the fish mitochondrial 12S rRNA gene (downloaded from GenBank, 
on the 23/01/2019). Each simulated assemblage was replicated 12 
times, with the same species and abundance composition, to mimic 

PCR replicates variability. To obtain a data set similar to those ob-
tained from high-throughput sequencing, we applied an Illumina 
error model with 98% substitutions and 2% insertions/deletions. A 
total of 45,000 reads were simulated in each sample replicate, for a 
total of 15,660,000 reads in the complete data set. All the Grinder 
FASTQ files containing the interleaved amplicon sequences and 
quality scores for each simulated assemblage were concatenated to 
obtain output files similar to those obtained after a Miseq sequenc-
ing of one library of pooled PCR samples. Grinder also produced a 
text file describing the abundance of each sequence in the simulated 
replicates for each sample. These files were used as expected spe-
cies composition and relative abundances to compute sensitivity, F-
measure and RMSE on reads abundance using the outputs of each 
program involved in the comparative analysis.

The input and output data as well as the code written to con-
struct the simulated data set are available as a GitHub repository at: 
https://github.com/lmath​on/metab​arcod​ing_data_simul​ation.

2.2  |  Selected programs and steps

We selected some of the most cited programs for each step through 
a literature review with the keywords “bioinformatics”, “metabar-
coding” and the name of the analysis step (see Table S2 and Method 
S1). The most cited programs we considered are listed in Table S3. 
Here, we use the word “program” to define an independent binary or 
package dedicated to one of the six steps of eDNA metabarcoding 
analysis. The word “pipeline” refers to a program or set of programs 
that proceeds to analysing all the steps from raw read assembly to 
species identification.

The characteristics of our simulated data set (Illumina sequenc-
ing, mitochondrial 12S mt rRNA gene region, very short amplicons, 
fish DNA) excluded many programs from our comparisons since they 
were not compatible with such data. For example, Mothur is special-
ized in analysing 16S rRNA gene sequences, TagCleaner and DeML 
do not support paired-end reads, and Kaiju is specialized in protein-
level assignment (see Table S3). QIIME is no longer maintained and 
some studies have shown that it requires a long execution time 
(Bonder et al., 2012) and the plugins used give a F-measure worse 
than that of QIIME2 (Gardner et al., 2019). As a result, QIIME2 was 
tested instead of QIIME. USEARCH (Edgar, 2010) is a widely used 
program but is only available as open-source in its memory-limited 
32-bit version which does not meet our open-source requirement. 
Instead, we used VSEARCH, the open-source equivalent (Rognes 
et al., 2016).

To compare and identify the best programs, each bioinformatic 
step was tested successively by changing the program that performs 
this part of the analysis and by maintaining all others fixed. We de-
cided to use the OBITools pipeline (Boyer et al., 2016) as a backbone 
for the performance tests (Figure 1), because this pipeline gener-
ates reliable results for fish eDNA metabarcoding data (Bylemans 
et al., 2018; Pont et al., 2018; Sales et al., 2019). All OBITools pro-
grams composing the fixed pipeline were evaluated in parallel with 

https://github.com/lmathon/metabarcoding_data_simulation
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the other programs tested for each step. The steps were defined as 
follows: (i) Merging, where forward and reverse reads were aligned 
to create a single consensus sequence, (ii) Demultiplexing, which as-
signed each sequence to its sample and removed the primers, (iii) 
Dereplication, or keeping only one representing sequence and count 
for strictly identical sequences, (iv) Quality filtering, which removed 
sequences that were too short or contained ambiguous bases, (v) 
Removing variants/PCR errors, so taking into account that real 
haplotypes and variants due to intractable sequencing/PCR errors 
should be grouped to avoid overestimating species richness, and 
(vi) Identifying taxa, where a taxon was assigned to each sequence. 
For this last step, we used the same reference database as the one 
used for the Grinder simulations. Only sequences assigned to the 
species level with more than 98% similarity were considered for 
species identification. The 10 programs compared in this study are 
listed in Table 1. Parameters chosen at each step for each program 
being compared can be found in Table 2. Since Grinder cannot simu-
late chimeras, the chimera removal step was not tested in this study. 
Each program was run on a cluster using Ubuntu 18.04.3 LTS with 
128GB RAM and 1 CPU to obtain comparable execution times. Data 
and software commands necessary to reproduce this study are avail-
able at: https://github.com/lmath​on/eDNA--bench​mark_pipel​ines.

2.3  |  Performance evaluation

Each program was evaluated by calculating indices that quantify its 
ability to produce accurate species lists (sensitivity and F-measure) 
and relative read abundances expected from the known or ground-
truth simulated communities (RMSE). The execution time of each 

program was also recorded. Details on the computation of execution 
times can be found in Method S2.

After taxonomic assignment, sequence counts were aggregated 
by species and by replicate. For each tested program, the number 
of false positives (FP, species present in the output of the program 
but not in the initial community), true positives (TP, species present 
in both the output of the program and the initial community) and 
false negatives (FN, species present in the initial community but not 
in the output of the program) were calculated. We then computed 
the sensitivity (equation 1) and F-measure (equation 2) indices for 
each replicate of each sample from FP, TP and FN, as suggested in 
Gardner et al. (2019):

These indices present complementary advantages. Sensitivity is 
relevant to identify programs missing rare taxa while the F-measure 
highlights programs detecting false positives. For each sample, we 
derived the mean and the standard error of these indices for each 
replicate. The standard error among replicates represents intrasample 
variability for a given program. The mean and standard error among 
the 29 samples represent the intersample variability for the results of 
each program. We compared the indices averaged across all samples 
between programs to determine if there was a significant difference 
of performance between programs. Since the data were not normally 
distributed, the mean comparison was carried out with a nonparamet-
ric Kruskal-Wallis test followed by a Dunn post-hoc test. Sensitivity 

(1)sensitivity =
TP

TP + FN
.

(2)F −measure =

2TP

2TP + FP + FN
.

TA B L E  1  Bioinformatic programs and pipelines used for the comparison

Program Step References Source code

OBITools Pipeline Boyer et al. (2016) https://git.metab​arcod​ing.org/obito​ols/
obito​ols/wikis/​home

Barque Pipeline – https://github.com/enorm​andea​u/barque

QIIME2 Pipeline Bolyen et al. (2019) https://docs.qiime2.org

VSEARCH M, Dr, QF, E, T† Rognes et al. (2016) https://github.com/torog​nes/VSEARCH

Pear M Zhang et al. (2014) http://www.exeli​xis-lab.org/web/softw​
are/pear

FLASh M Magoč and Salzberg (2011) https://sourc​eforge.net/p/flash​page

CASPER M Kwon et al. (2014) http://best.snu.ac.kr/caspe​r/

Fastq-join M Aronesty (2013) https://github.com/brwnj/​fastq​-join

Fastp M, QF Chen et al. (2018) https://github.com/OpenG​ene/fastp

Cutadapt Dm, QF Martin (1994) https://github.com/marce​lm/cutadapt
https://cutad​apt.readt​hedocs.io

Prinseq QF Schmieder and Edwards (2011) http://prins​eq.sourc​eforge.net

Flexbar QF Dodt et al. (2012) https://github.com/seqan/​flexb​ar/wiki

Swarm E Mahé et al. (2015) https://github.com/torog​nes/swarm

Sintax T Edgar (2016) https://www.drive5.com/usear​ch/manua​
l/cmd_sintax.html

Abbreviations: Dm, demultiplexing; Dr, dereplication; E, PCR/sequencing error removal; M, merging; QF, quality filtering; T, taxonomic assignment.

https://github.com/lmathon/eDNA--benchmark_pipelines
https://git.metabarcoding.org/obitools/obitools/wikis/home
https://git.metabarcoding.org/obitools/obitools/wikis/home
https://github.com/enormandeau/barque
https://docs.qiime2.org
https://github.com/torognes/VSEARCH
http://www.exelixis-lab.org/web/software/pear
http://www.exelixis-lab.org/web/software/pear
https://sourceforge.net/p/flashpage
http://best.snu.ac.kr/casper/
https://github.com/brwnj/fastq-join
https://github.com/OpenGene/fastp
https://github.com/marcelm/cutadapt
https://cutadapt.readthedocs.io
http://prinseq.sourceforge.net
https://github.com/seqan/flexbar/wiki
https://github.com/torognes/swarm
https://www.drive5.com/usearch/manual/cmd_sintax.html
https://www.drive5.com/usearch/manual/cmd_sintax.html
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and F-measure were also calculated after removing singletons from 
the data set (sequences with only 1 read in the pipeline outputs).

Here, we are referring to species abundance as the number of 
reads assigned to a given species in each sample replicate. For each 
replicate of each sample, the relative abundance of each species was 
calculated from the total number of reads and compared to the ex-
pected relative abundances for each species (simulated by the Grinder 
program). The root mean square error (RMSE) was then calculated for 
each abundance comparison. This index quantifies the level of dis-
similarity between two lists of abundances: the lower the RMSE is, 
the more similar the observed and expected relative abundances are. 

The mean RMSE per sample was calculated as well as the associated 
standard error. Sensitivity, F-measure and RMSE were also calculated 
per sample, after summing the species counts in the twelve repli-
cates. Statistical analyses were carried out with r v3.5.3.

2.4  |  Comparing assembly of best programs to 
full pipelines

A complete pipeline was built by assembling the most performant 
programs for each step based on the performance indices to detect 

TA B L E  2  Description of the six analyses steps, their objectives, and the parameters set for each program compared

Analysis step Objective Program Parameters

Merging reads Assemble forward and reverse reads.
Min. overlap = 10
Max. overlap = 150
(Max mismatch = 25%)

illuminapairedend --

VSEARCH --fastq_mergepairs
–threads 1 –fastq_maxdiffpct 25

Flash -m 10 –M 150 –x 0.25 –t 1

Fastq-join -m 10 –p 25

CASPER -w 10 –g 0.25 –t 1 -j

Pear -v 10 –c 0 –n 0 –j 1

Fastp --merge –overlap_len_require 10
--overlap_diff_limit 15 –w 1
--overlap_diff_limit_percent 25

Demultiplexing Assign reads to sample and remove primers.
0 mismatch on tags, max. 2 mismatches on 

primers

ngsfilter -e 2

Cutadapt -g –j 1 –e 0 (or 0.12) –O 8 (or 15)
--revcomp

Dereplication Gather strictly identical sequences and keep 
count of reads abundance

obiuniq -m sample

VSEARCH --derep_fulllength –sizeout
–fasta_width 0 –threads 1
--minseqlength 1

Quality filtering Filter sequences shorter than 20 bp and/or 
containing ambiguous bases

obigrep -s’[ATCG]+$’–l 20

VSEARCH --fastx_filter –fastq_maxn 0
–fastq_minlength 20 –threads 1

Cutadapt -m 20 –max_n 0 –j 1

Flexbar --max-uncalled 0 –n 1
–min-read-length 20

Prinseq -min_length 20
–ns_max_n 0 -noniupac

Fastp -n 0 –l 20 –w 1

Error removal Identify and remove PCR and sequencing errors 
(by clustering with proportion of variants/
parents)

obiclean -r 0.05 –H

VSEARCH --cluster_unoise --sizein
–minsize 1 –sizeout –threads 1
–unoise_alpha 2 --minseqlength 20

Swarm -z –f –t 1

Taxonomic 
assignment

Assign reads to a species, with a 98% similarity 
threshold with the best match

ecotag –m 0.98

VSEARCH --usearch_global –id 0.98
–fasta_width 0 –dbmask none
--maxaccepts 20 --maxrejects 20
–blast6out –maxhits 20
--top_hits_only --qmask none
--minseqlength 1 –threads 1
–dbmatched --matched

Sintax -sintax_cutoff 0.98 –threads 1
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species occurrence, to retrieve the relative read abundances and the 
execution time. Formatting scripts were written when necessary to 
facilitate the transition between programs. This pipeline was com-
pared to other pipelines, namely Barque v1.6.2, OBITools v1.2.13 
and qiime2 (Bolyen et al., 2019). Since qiime2 is a toolbox, the results 
will be dependent on the plugins used. Here, we used demux for 
demultiplexing, cutadapt for primer removal, dada2 (Callahan et al., 
2016) for error removal, dbotu-q2 for ASV clustering and sklearn-
classifier for taxonomic assignment. Barque uses trimmomatic for 
filtering, Flash for merging, its own python script to split amplicons, 
and VSEARCH for taxonomic assignment. The steps, programs, and 
parameters used by Barque and qiime2-based pipelines can be found 
in Table 3. Because Barque takes demultiplexed reads as inputs, 
the demultiplexing was performed upstream with Cutadapt using 
the same parameters as for our assembled pipeline. Each pipeline 
was run using 16 CPUs. The same performance indices (sensitivity, 
F-measure and RMSE on reads abundance) were calculated for the 
outputs of each pipeline and compared.

2.5  |  Illustrating the benchmark on real data

The same comparison process was run on an empirical data set 
obtained from the Mediterranean Sea. The eDNA samples were 
collected on the 5 June 2018 in four replicates within the no-take 
reserve of Carry-le-Rouet, at 5 km, and at 10 km outside the re-
serve, for a total of 12 samples (Boulanger et al., 2021). For each 
sample, 30 L of seawater were continuously collected along a 2 km 
transect from approximately 1m below the surface. Transects were 
conducted close to the coastline and the substrate to ensure the 
sampling of coastal organisms. Seawater samples were filtered on 
site using a VigiDNA 0.2 µM cross flow filtration capsule (SPYGEN). 

Immediately after filtration, the capsule was drained by filtering 
air, filled with 80 ml of CL1 buffer (SPYGEN) and stored at room 
temperature until the extraction. DNA extraction, amplification 
(12 replicates per sample) and sequencing followed the protocol 
described in Polanco Fernández et al. (2020). The different pro-
grams and pipelines were run on the raw sequences obtained after 
sequencing. The reference database used for the taxonomic as-
signment was built by performing in silico PCR with teleo primers 
using ecoPCR (Boyer et al., 2016) on the entire public database 
ENA (Leinonen et al., 2011; release 141) and by adding sequences 
from Mediterranean species sequenced by our group (Boulanger 
et al., 2021). Since the information about actual read abundances 
in the environment is unknown, it was not possible to measure the 
RMSE index. Hence, only the sensitivity and F-measure indices 
were measured before and after removing singletons in samples. To 
do so, fish species lists obtained by each program or pipeline were 
compared to lists of fish species identified by underwater visual 
census in Carry-le-Rouet reserve and outside, during several cam-
paigns in 2018 (Charbonnel et al., 2020). Those lists obtained by 
independent sampling methods were considered as the expected 
species occurrences. To measure comparable execution time, each 
individual program was run using 1 CPU, and each pipeline was run 
using 16 CPUs.

3  |  RESULTS

3.1  |  Sensitivity, F-measure and RMSE on 
abundances

For each program tested, a mean index was estimated by averaging 
raw values of indices across replicates and samples.

TA B L E  3  Programs and parameters used in the complete pipelines compared

Pipeline Step Program used Parameters

QIIME2 Demultiplexing demux emp-paired --p-golay-error-correction FALSE

Primer removal cutadapt trim-paired --p-error-rate 0.12 --p-overlap 16

Filtering and denoising Dada2 denoise-paired --p-trunc-len-f 0 --p-trunc-len-r 0
--p-trunc-left-f 0 --p-trunc-left-r 0
--p-max-ee-f 2 –p-max-ee-r 2
--p-trunc-q 2 --p-chimera-method none

OTU calling dbotu-q2 call-otus --p-gen-crit 0.1 --p-abund-crit 0
--p-pval-crit 0.005

Taxonomic assignment Feature-classifier classify-sklearn --p-confidence 0.7

Barque Filter and trim raw reads Trimmomatic Min_hit_length 16 Crop_length 80

Merge paired-end reads Flash -t 1 –z –m 20 –M 280

Split amplicon Python script
split_amplicons_one_file.py

Max_primer_diff 8

Taxonomic assignment VSEARCH –usearch_global --qmask none –dbmask none –id 0.98 
–maxaccepts 20 –maxrejects 20

–maxhits 20 –minseqlength 20
–query_cov 0.6 –fasta_width 0
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For the merging, demultiplexing, dereplication, read filtering and 
error removal steps, the sensitivity, F-measure and RMSE were not 
significantly different between the programs (Figures S1–S3). The 
mean sensitivity obtained with the full OBITools pipeline was 0.94 
and ranged from 0.78 to 1 with a mean standard error per sample 
of 0.004. The mean F-measure obtained with OBITools was 0.97 
(ranged between 0.88 and 1). The mean RMSE between the relative 
abundances obtained for each replicate and the expected relative 
abundances was 1.1 with OBITools (ranged between 0.09 and 4.6).

We found significant differences between programs only for 
the taxonomic assignment step (Figure 2). Taxonomic assignment 
with Sintax produced significantly lower sensitivity (0.57, Figure 2a, 
p = 4.8e-13) and F-measure (0.71, Figure 2b, p = 7.1e-13) and higher 
RMSE (3.2, Figure 2c, p  =  2e-08) than VSEARCH –usearch_global 
and ecotag. VSEARCH –usearch_global provided a significantly 
higher mean sensitivity than ecotag (0.97), and significantly lower 
mean RMSE (0.4). The assignment program VSEARCH was therefore 
more accurate when evaluating community composition and read 
abundances than ecotag.

Sensitivity and F-measures, after removing singletons, showed 
the same pattern but were lower due to less TP and more FN (Figures 
S4–S5). Sensitivity and F-measure per sample were higher and RMSE 
lower due to the increased detection of rare species when pooling 
the 12 replicates (Figures S6–S8), but the difference between pro-
grams showed the same patterns.

3.2  |  Execution time

Execution time varied importantly between programs (Figure 3). For 
all but one step, OBITools programs were the slowest, sometimes 
by a factor of more than 200. The fastest program for merging was 
VSEARCH (3.1  min, Figure 3). Demultiplexing with Cutadapt was 
faster than with ngsfilter (30 min and 488 min respectively, Figure 3). 
Execution time of the sequence dereplication step was 198 min with 
obiuniq, and 0.8 min only with VSEARCH (Figure 3). VSEARCH and 
Flexbar were faster than other programs to filter reads (0.2  min). 
Execution time of the PCR and sequencing error removal step lasted 
17.4 min with obiclean, while Swarm and VSEARCH –cluster_unoise 
ran in 0.4 min (Figure 3). Sintax and VSEARCH –usearch_global ex-
ecuted the assignment in 1.8 and 0.14 min respectively while ecotag 
(OBITools) ran in 58 min on our simulated data set (Figure 3).

3.3  |  Comparison between pipelines

From the step comparison results between programs, we selected 
the best ones in terms of sensitivity, F-measure, RMSE on the abun-
dance, and execution time. Since indices varied in the same direction, 
the selection was straightforward. These selected programs were 
integrated in a pipeline following the order of the steps shown in 
Figure 1. This custom pipeline was composed of VSEARCH –fastq_
mergepairs for assembling the reads, Cutadapt for demultiplexing, 

VSEARCH –derep_fulllength for the dereplication, VSEARCH –
fastx_filter for the quality filtering, Swarm for the suppression of 
PCR and sequencing errors and VSEARCH –usearch_global for the 
taxonomic assignment.

Our assembled pipeline obtained a mean sensitivity of 0.97, the 
same as Barque (0.97), higher than OBITools (0.94) and significantly 
higher than QIIME2-based (0.9) (Figure 4a, p = 6.4e-03). The mean F-
measure was the same for the assembled pipeline and Barque (0.98) 
and significantly higher than OBITools (0.97, Figure 4b, p = 0.05) 
and QIIME2-based (0.94). Barque and our assembled pipeline were 
also the best pipelines to recover relative abundances, and mean 
RMSE were not significantly different, with 0.31 for Barque and 
0.44 for our pipeline, while mean RMSE were significantly higher 
for OBITools (1.1) and QIIME2-based (1.24) (Figure 4c, p = 2.5e-07). 
Sensitivity and F-measures after removing singletons showed the 
same pattern but were lower due to less TP and more FN (Figure S9).

The execution times of the four pipelines were very different. 
Barque alone ran in 2  min 25  s and in 30  min when the demulti-
plexing with Cutadapt was added. With 16 CPUs used where pos-
sible, our assembled pipeline ran in 46 min and QIIME2 in 95 min. 
OBITools was the longest and ran in 1,010 min so 40 times slower 
than Barque (Figure 4d).

The percentage of reads assigned to the species level with 98% 
similarity also differed between pipelines. Barque was able to assign 
a species name to 98.7% of the raw demultiplexed reads (15,458,570) 
whereas our pipeline assigned 95.6% of the reads (14,970,256 reads), 
OBITools 94.4% (14,783,635), and QIIME2 91.5% (14,316,059).

3.4  |  Illustration from real data

The comparison of the program performances on empirical data 
provided results identical to those obtained with the simulated 
data set. The only significant difference was found for the assign-
ment step where Sintax obtained a significantly lower F-measure. 
The sensitivity and F-measure showed slight variations between 
programs, but these were not significant (Figures S10–S11). After 
removing singletons, sensitivity and F-measures showed the same 
variation which were lower due to less TP and more FN (Figures 
S12–S13). Execution time on real data confirmed that VSEARCH 
was the fastest program for merging, dereplicating, filtering and as-
signing (along with Sintax), Cutadapt was fastest for demultiplexing, 
and Swarm was fastest for cleaning errors (Figure S14). The perfor-
mance comparison between our assembled pipeline and the other 
pipelines provided results concordant with the analyses on simu-
lated data. QIIME2-based pipeline was significantly less performant 
than Barque, OBITools and our assembled pipeline for sensitivity 
(Figure 5a, p = 5.7e-06) and F-measure (Figure 5b, p = 2.2e-06), also 
when removing singletons (Figure 5c–d). Barque was only signifi-
cantly less performant than OBITools and the assembled pipeline 
for F-measure, due to a slightly higher number of FP. Execution 
times were much shorter for Barque and the assembled pipeline (53 
and 155 min, respectively, Figure 5e).



8  |    MATHON et al.

The lower sensitivity and F-measure values obtained with all 
programs tested on the empirical data set were due to a high number 
of FN (species seen by divers and not found with eDNA). However, 
many of these species were identified with eDNA with a similarity 
to the reference sequence that was lower than our threshold of 98% 
and were thus discarded from further analyses.

4  |  DISCUSSION

4.1  |  A step-by-step comparison between 
programs

The results of our program comparison allowed us to select the best 
programs for retrieving the initial community composition and abun-
dance structure of both simulated and real fish communities. For five 
out of six steps, execution time was the most discriminant factor. 
OBITools programs obtain high sensitivities and F-measures but re-
quire much longer execution times than the other programs. Results 
obtained with the real data set are similar to those obtained with 
the simulated data. The assignment step was the only one showing 
significant differences between programs indices, and time was the 
deciding factor for all other steps.

We thus provide recommendations for programs to use at each 
step. For merging reads, we recommend to use VSEARCH –fastq_
mergepairs, which is the fastest program. For demultiplexing we 
suggest Cutadapt, which has similar performance as OBITools’ ngs-
filter but is much faster. VSEARCH –derep_fulllength and --fastx_
filter are retained for dereplication and read filtering respectively, 
because they obtain similar performances as other programs tested, 
but are faster. For error removal, we recommend using Swarm, which 
produces results as good as obiclean and VSEARCH --cluster_unoise 
but is faster. VSEARCH –usearch_global provides significantly bet-
ter results than Sintax and ecotag for taxonomic assignment with a 
complete reference database, both in terms of sensitivity, F-measure 
and RMSE on relative abundances.

4.2  |  Comparison of complete pipelines

The comparison of complete pipelines shows that Barque obtains 
sensitivity and F-measures as high as those of the assembled pipe-
line made of the best individual programs. These two pipelines also 
report the most accurate estimates of relative abundances. Barque is 
the fastest pipeline while our pipeline takes 1.5 times longer to ana-
lyse the same simulated data set. QIIME2-based pipeline is slightly 
slower than our pipeline while taxonomic and abundance results are 
significantly worse than with the other pipelines. OBITools requires 
more than 30 times the running time of Barque, the fastest pipe-
line. It also returns significantly worse results for abundances RMSE 
but provides good sensitivity and F-measures. It is noteworthy to 
consider that the intentions behind the design of these pipelines dif-
fer. For example, Barque aims to be exhaustive in the detection of 
species while minimizing the risk of not detecting a rare species of 
potential interest, such as an invasive species, so omits a denois-
ing step. As a result, Barque annotates a higher proportion of the 
raw reads, and also produces slightly more false positives than our 
pipeline. In contrast, while the goal of our pipeline is also to provide 
species abundances that are as close to reality as possible, it con-
trols more stringently for false positives by using a denoising step, 
which could lead to the removal of some very rare species and to 

F I G U R E  2  Compared performance indices of each program 
tested on the simulated data set, for the taxonomic assignment 
step. The dots represent the mean index for the 12 replicates of 
each sample, with the standard error; the boxplot represents the 
median of the performance index and the first and third quartiles 
for the 29 samples. (a) Sensitivity calculated on the raw outputs of 
each pipeline. (b) F-measure calculated on the raw outputs of each 
pipeline. (c) RMSE calculated between observed abundances and 
expected abundances for each replicate of each sample. Letters 
indicate significant differences
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less annotated reads. Despite these different designs, Barque and 
our pipeline give almost identical results on all three indices. QIIME2 
is a toolbox with many different steps where several plugins are 
available. The plugins chosen in the QIIME2-based pipeline were the 
most suitable for our data given the goal of our study, and the most 
comparable to the tools comprised in the other pipelines. However, 
many other possibilities exist and choosing other plugins and other 
treatment steps would result in as many different pipelines, each 
with a different outcome. QIIME2 offers numerous possibilities, and 
choosing the most appropriate tools for the purpose of a given study 
is important as this will influence the results and interpretation.

Analyses on the empirical data set also revealed that the new 
pipeline is the most performant. Barque appears slightly less per-
formant on the real data due to an important number of what 
was classified as false positives in the data set. However, many of 
these species were observed by divers in different years. These 
species were thus probably present in the area during eDNA sam-
pling even though they were not spotted by divers at the time of 
their campaign. As a result, it is important to be critical towards 
the species identified by eDNA and keep in mind that they could 
be real occurrences even if they were not reported using conven-
tional observation methods. Therefore, in the context of Teleostean 

metabarcoding based on primer teleo, we recommend using Barque 
or the assembled pipeline. However, it is important to keep in mind 
that each pipeline considered here is a bespoke solution to the ques-
tions we aimed to address. Moreover, the differences observed in 
the performance of each pipeline depends on the choice of tools 
composing each pipeline.

4.3  |  Taxonomic assignment

The three taxonomic assignment algorithms we tested differ in many 
aspects. OBITools's ecotag searches the reference database to find 
the reference sequence with the highest similarity to the query se-
quence. It then searches for all other potential reference sequences 
with a similarity to the first reference sequence equal or higher 
than the similarity to the query sequence. Ecotag then assigns the 
query sequence to the lowest common ancestor (LCA) of reference 
sequences. Ecotag provides a taxon name at the family, genus or 
species level as well as information about all matching reference se-
quences (Boyer et al., 2016). VSEARCH –usearch_global filters ref-
erence sequences that share the highest number of k-mers with the 
query sequence and then computes the optimal global alignment 

F I G U R E  3  Execution time in minutes of 
each program tested for each step on the 
simulated data set. Programs compared 
for the assembly, demultiplexing, 
dereplication, filtering, error removal, and 
assignment steps
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between the query sequence and these reference sequences 
(Rognes et al., 2016). The taxonomic assignment contains the list of 
species matching to the query sequence with equal similarity. Sintax 
also proceeds with a k-mers search, among 100 iterations (Edgar, 
2016). For each iteration, a subsample of k-mers contained in the 
query sequence is extracted. The reference sequence that has the 
maximum k-mers in common is retained and the taxonomy is taken 
from this sequence. After the 100 iterations, the species name 
that occurs most often is identified and its frequency is reported, 
along with the frequency of the genus and family identifications. 
If these frequencies are lower than the chosen identity threshold, 
then the assignment is not retained. QIIME2-based pipeline uses 
the plugin classify-sklearn that apply a machine learning classifier 
from the SciKit-learn algorithm (Pedregosa et al., 2011). The method 
is based on k-mer counts extraction from the reference sequences 
(up to 32-mers) and training of the scikit-learn multinomial naive 
Bayes classifier (Bokulich et al., 2018). Barque also uses VSEARCH 
--usearch_global and provides assignments to species, genus, and 
group level (which can be anything above the genus, for example 
the family) and uses different similarity thresholds for assignment 
at each of these three levels. However, assignments to taxonomic 

levels above the species level were not analysed here, as we focused 
on species name assignments.

4.4  |  Sources of variation in species detection

Some samples from the simulated data set obtained much poorer 
sensitivity and F-measure values regardless of the program used. 
This is due to the presence of false negatives of several origins. First, 
some species of the custom reference database used for simula-
tion and assignment have 100% identical sequences for this por-
tion of the 12S rRNA gene and are therefore not distinguishable 
at the species level (e.g., Neosalanx taihuensis and N. tangkahkeii). 
Second, some species have a very low abundance and are therefore 
not found in each of the 12 replicates of the samples in the pipeline 
outputs. The presence of these false negatives also influences the 
RMSE between the expected and obtained abundances. For each 
of these false negatives, the observed relative abundance is 0 and 
the RMSE is thus higher for these replicates. The computation of 
the performance indices per sample, after pooling the observations 
in the 12 replicates, shows better results, as the full consideration 

F I G U R E  4  Performance indices of each pipeline on the simulated data set. The dots represent the mean index for the 12 replicates of 
each sample, with the standard error; the boxplots represent the median of the index and the first and third quartiles for the 29 samples. (a) 
Sensitivity calculated on the raw outputs of each pipeline. (b) F-measure calculated on the raw outputs of each pipeline. (c) RMSE calculated 
between observed abundances and expected abundances for each replica of each sample. (d) Execution time of each pipeline
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of rare species decreases the number of false negatives. Only a few 
false positives are observed in the outputs of the different programs 
and pipelines; they are due to wrong taxonomic assignments either 
caused by sequencing errors introduced during the amplicon simula-
tions or represent residual errors in the real data set.

Performance indices for the empirical data set are lower than the 
ones on the simulated data due to a high number of false negatives 
(some due to the too stringent similarity threshold) and some false 
positives. It is likely that with an eDNA sampling limited to one day, 
all of the species present on site were not detected and that divers 
did not detect elusive or hidden species (Aglieri et al., 2020; Polanco 
et al., 2020). In order to reduce the number of false negatives and 
false positives, it would be necessary to extend the eDNA sampling 
of each site to several seasons and to consider similarity thresholds 
adapted for the taxonomic assignment.

For all programs tested in this study, as well as for both data sets, 
we looked at the impact of the removal of singletons. This results 
in a slight decrease in sensitivity and F-measure (see Figures S4–
S6 and S9–S10). After removing the sequences with a very weak 
representation, some of the false positives are removed. However, 
removing the singletons also removes species with real but very low 
abundances, thus increasing the number of false negatives, which 
can also lead to bad interpretations of species presence/absence. In 
real eDNA samples, singletons represent rare taxa of high interest, 
like invasive or threatened species, but also contamination and PCR 
or sequencing errors, such as tag or index jumps (Kwok & Higuchi, 
1989; Schnell et al., 2015; Taberlet et al., 2018). In the real data from 
Carry-le-Rouet, the removal of singletons led to the loss of true pos-
itives, indicating that eDNA can detect rare and low-abundance spe-
cies. The decision to remove singletons from a data set should then 

F I G U R E  5  Performance index of the four pipelines on the real data set. (a) Mean sensitivity. (b) Mean F-measure. (c) Mean sensitivity, 
after removing singletons from the data set. (d) Mean F-measure, after removing singletons from the data set. (e) Execution time of each 
pipeline
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depend on the objectives and preferences of the study, or aimed at 
finding a balance between removing all contaminations and errors 
and retaining higher chances to detect rare species.

4.5  |  Perspectives

In this study we focused on a specific fish 12S mitochondrial gene 
region but our benchmark process could be extended to other taxa 
and barcodes with only slight modifications. When using different 
markers, depending for example on the size of the barcode and the 
completeness of reference databases, some parameters will have to 
be updated, but the general bioinformatic treatment will be similar, 
and the same programs can be used.

The same comparison could be extended to recent bioinformatic 
programs, or programs not considered in this study, such as MeFit 
for merging and filtering (Parikh et al., 2016), or DUDE-seq for de-
noising and correction of sequencing errors (Lee et al., 2017). We 
could also apply our comparison approach on other pipelines, such 
as eDNAFlow which produces ZOTUs and uses a LCA assignment 
method (Mousavi-Derazmahalleh et al., 2021) or CoMa (Hupfauf 
et al., 2020).

The similarity threshold set at 98% for assigning a sequence to 
a species is equivalent, on our short amplicons, to a maximum of 
either zero or one mismatch between the query and the reference 
sequences, depending on the length of the amplicon, which varies 
from one species to another. This can result, as in the case of the real 
data analysed here, in the removal of a number of sequences that 
would have been correctly assigned with a lower confidence and 
thus lead to some false negatives. Therefore, it would be relevant to 
consider adaptive thresholds.

In this study, we focused on taxonomic assignment at the spe-
cies level. As a result, we did not explore the ability of the algo-
rithm to provide taxonomic assignment above the species level. 
Nevertheless, it would be worthwhile for ecological applications to 
consider higher taxonomic assignment using an algorithm with such 
abilities, especially in the case of incomplete reference databases. 
PROTAX, for example, is a probabilistic method for taxonomic as-
signment that uses outputs of other classifiers (BLAST, RDP clas-
sifier, Wang et al., 2007) as predictors (Somervuo et al., 2016). The 
Anacapa Toolkit (Curd et al., 2019) includes the Anacapa Classifier 
module that aligns ASVs to a reference database using Bowtie2 and 
assigns taxonomy with a Bayesian lowest common ancestor (BLCA) 
method (Gao et al., 2017). These two approaches might provide rel-
evant results for taxonomic assignments at higher levels, with prob-
ability and confidence scores.

5  |  CONCLUSION

The main finding of this study is that the choice of a given program 
for eDNA metabarcoding analysis depends mostly on the taxonomic 
assignment step and the resulting diversity estimates. For all other 

steps, the only difference between programs standardized with 
the same parameters is in the execution time. This study provides 
some guidance for the choice of the best bioinformatics tools or the 
best pipeline to use for analysis of eDNA metabarcoding data. Most 
importantly, this study highlights the need for more efficient and 
accurate tools for eDNA metabarcoding taxonomic assignments, 
especially when only incomplete reference databases are available.
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