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Abstract
Macroinvertebrate assemblages are the most common bioindicators used for stream 
biomonitoring, yet the standard approach exhibits several time-consuming steps, 
including the sorting and identification of organisms based on morphological crite-
ria. In this study, we examined if DNA metabarcoding could be used as an efficient 
molecular-based alternative to the morphology-based monitoring of streams using 
macroinvertebrates. We compared results achieved with the standard morphologi-
cal identification of organisms sampled in 18 sites located on 15 French wadeable 
streams to results obtained with the DNA metabarcoding identification of sorted 
bulk material of the same macroinvertebrate samples, using read numbers (expressed 
as relative frequencies) as a proxy for abundances. In particular, we evaluated how 
combining and filtering metabarcoding data obtained from three different markers 
(COI: BF1-BR2, 18S: Euka02 and 16S: Inse01) could improve the efficiency of bio-
assessment. In total, 140 taxa were identified based on morphological criteria, and 
127 were identified based on DNA metabarcoding using the three markers, with an 
overlap of 99 taxa. The threshold values used for sequence filtering based on the 
“best identity” criterion and the number of reads had an effect on the assessment 
efficiency of data obtained with each marker. Compared to single marker results, 
combining data from different markers allowed us to improve the match between bi-
otic index values obtained with the bulk DNA versus morphology-based approaches. 
Both approaches assigned the same ecological quality class to a majority (86%) of the 
site sampling events, highlighting both the efficiency of metabarcoding as a biomoni-
toring tool but also the need for further research to improve this efficiency.
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1  | INTRODUC TION

Human activities have major negative impacts on freshwater ecosys-
tems with drastic consequences for their biodiversity at the global 
scale (Dudgeon et al., 2006; Vörösmarty et al., 2010). In this context, 
important directives have been implemented to assess the ecological 
status of freshwater systems (e.g., the Water Framework Directive, 
hereafter abbreviated “WFD”, in Europe [Directive 2000/60/EC]) or 
to protect their integrity (the Clean Water Act in the USA [Public 
Law 92–500]). There is therefore a major need for tools that allow 
large-scale, efficient monitoring of the ecological status of water 
bodies, with the ultimate objectives of identifying the underlying 
causes of the observed deterioration in water quality (or habitat 
suitability) and taking the appropriate measures to improve the eco-
logical status of the monitored ecosystems. Such monitoring usually 
involves the survey of specific groups of organisms, namely biologi-
cal quality elements (BQEs) in the WFD: fishes, macroinvertebrates, 
macrophytes, phytoplankton and diatoms. Standard monitoring ap-
proaches are generally based on the morphological identification 
of sampled organisms using harmonized, intercalibrated protocols. 
Depending on the standards and the studied BQE, these approaches 
may exhibit several limitations: (i) they can be destructive/invasive, 
(ii) they can be resource-intensive (i.e., time-consuming and finan-
cially expensive), and (iii) they require taxonomic expertise for mor-
phology-based identification, whereas such expertise is continually 
declining in many countries (Hutchings, 2019; Terlizzi et al., 2003).

DNA metabarcoding is an innovative molecular-based alternative 
for ecosystem monitoring. This approach consists first in extracting 
DNA from environment samples of sediment, soil, water, faeces or 
directly from community bulk material (Hering et al., 2018; Taberlet 
et al., 2012). DNA is then amplified using versatile molecular mark-
ers and sequenced through high-throughput sequencing. These se-
quences are compared to those found in reference databases, online 
and/or developed for a given project (e.g., Baird et al., 2011; Rimet 
et al., 2016), in order to obtain a list of taxa potentially present in 
the monitored ecosystem or in the bulk sample of the surveyed 
community.

Compared to traditional morphology-based methods, the 
metabarcoding approach is usually considered as noninvasive 
(e.g., when directly extracting DNA from water samples; Dejean 
et al., 2012; Valentini et al., 2009), and comparably inexpen-
sive and rapid (Baird & Hajibabaei, 2012; Ji et al., 2013; Taberlet 
et al., 2012). It can also allow for better taxon identification than 
morphological expertise (Sweeney et al., 2011), and an overall 
better detection of all the species in aquatic ecosystems (Civade 
et al., 2016; Valentini et al., 2016). Moreover, metabarcoding also 
allows a sound estimate of beta diversity (Ji et al., 2013; Serrana 
et al., 2019; Sweeney et al., 2011; Yu et al., 2012), and is a reliable 
source of information for policy-making (Ji et al., 2013). Therefore, 
metabarcoding has been considered as a potential and credible 
alternative to morphology-based monitoring for both terres-
trial and aquatic ecosystems (Baird & Hajibabaei, 2012; Elbrecht 
et al., 2017; Shaw et al., 2017). In freshwaters, several studies have 

highlighted the biomonitoring potential of metabarcoding, which 
could efficiently discriminate streams according to their ecological 
quality (Gibson et al., 2015; Hajibabaei et al., 2011; Ji et al., 2013; 
Kuntke et al., 2020; Mächler et al., 2019; Serrana et al., 2019; 
Sweeney et al., 2011; Zizka et al., 2020). For instance, environmen-
tal DNA (eDNA) information on eukaryotic communities in bottom 
sediments has been strongly associated with land-use pressure 
types (Xie et al., 2017), and macroinvertebrate bulk data have been 
used to infer key gradients of stream condition, including dissolved 
oxygen, dissolved organic carbon, total nitrogen and conductivity 
(Emilson et al., 2017).

The main objective of the present study was to test the ability 
of metabarcoding, applied to standardized bulk samples of benthic 
macroinvertebrates, to assess the ecological status of streams based 
on a large-scale biomonitoring programme performed within the 
WFD context. Using metabarcoding on bulk samples could allow us 
to bypass the organism identification step, which is time-consuming 
and a source of uncertainty due to operator misidentifications and 
interoperator identification variability (Metzeling et al., 2003). We 
also investigated how to improve the bioassesment ability of me-
tabarcoding by testing:

1. Combinations of different markers and primer sets, selected 
for their ability to identify a large range of benthic macro-
invertebrate groups. If individual markers can exhibit some 
bias in the detection of taxa in a given sample (Elbrecht & 
Leese, 2015, 2017; Piñol et al., 2015), using multiple markers 
which efficiently amplify different taxonomic groups can limit 
the global bias of detection. However, increasing the num-
ber of markers inflates the time and cost of analyses (Clarke 
et al., 2014).

2. Varying threshold values for metabarcoding data filtering. 
Namely, we investigated the minimal threshold values for best 
identity match (the percentage of similarity between a sequence 
and a barcode found in a reference database) and the number of 
reads for the identified molecular operational taxonomic units 
(MOTUs). Classically, a single threshold value is chosen for best 
identity matches, either one value per taxonomic level of inter-
est (e.g., species, genus) or a unique value for all the taxonomic 
levels. For arthropods, a unique threshold value generally close 
to 97% is frequently found in the literature (e.g., 97% in Elbrecht 
& Leese, 2017; Serrana et al., 2018; Serrana et al., 2019; Yu 
et al., 2012; 97.5% in Carew et al., 2018; 98% in Lobo et al., 2017). 
Low-abundance (in terms of number of reads) MOTUs, for exam-
ple exhibiting a relative abundance lower than 0.003% (Elbrecht & 
Leese, 2017) or 0.005% (Bokulich et al., 2013; Carew et al., 2018) 
in a given sample, are usually excluded from metabarcoding data, 
as they are considered unreliable (e.g., Elbrecht & Leese, 2017; 
Elbrecht et al., 2017).

The selection of genetic markers (e.g., mitochondrial vs. nuclear, 
single vs. multicopy, fast evolving vs. conserved, protein-coding vs. 
ribosomal), the respective primer sets as well as the threshold values 
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are important decisions to take in a metabarcoding experiment, but 
for which no clear guidelines exist (but see Bokulich et al., 2013). 
Such decisions may have a strong impact on the DNA-based bio-
assessment, which could be exacerbated by the high phylogenetic 
diversity of benthic invertebrates in a single sample. For example, 
taxonomic groups that are not as well amplified as other groups by 
a given primer set or marker could be filtered out of the data set 
due to their low numbers of reads. The amplification rate can indeed 
vary greatly among the major taxonomic groups in benthic inver-
tebrate assemblages, even when accounting for biomass (Elbrecht 
et al., 2017).

We systematically studied the efficiency of the three selected 
markers and of all the possible combinations of these markers, by 
comparing bulk-DNA and standard results through the lens of the 
French Multimetric Invertebrate Index (I2M2; Mondy et al., 2012). 
The I2M2 was designed as a WFD-compliant index for the inverte-
brate-based ecological assessment of French wadeable streams. 
The standardized taxonomic levels needed to calculate the I2M2 are 
mainly the genus level, except for Diptera, Hirudinea and Turbellaria 
(family level) and Nematoda or Oligochaeta identified as such (stan-
dard XP T90-388; AFNOR, 2010). We tested the usefulness of me-
tabarcoding for assessing and discriminating the ecological status of 
streams, based on a set of streams with a wide range of ecological 
features.

2  | MATERIAL AND METHODS

2.1 | Sampling sites and data acquisition

Sampling was conducted at 18 sites on 15 streams belonging to 
five different stream types defined according to stream order 
(Strahler, 1957) and French hydroecoregions (Wasson et al., 2002, 
2006) (Figure 1; see also Table S1). Streams were selected from 
two national networks, surveying (i) reference sites (Réseau de 
Référence, RdR, about 400 sites) and (ii) the mean ecological quality 
of French streams via the long-term survey of a large selection of 
sites (Réseau de Contrôle de Surveillance, RCS, about 1500 sites). 
These surveys have allowed the gathering of large amounts of in-
formation on chemical and hydromorphological pressures impairing 
water quality and habitats since 2007 (Larras et al., 2017; Mondy 
et al., 2012). The selection of sites was based on three criteria: 
their geographical origin (two different hydro-eco-regions × nine 
streams), pressure intensity and category (water quality degradation 
or hydrological alteration), and stream type (Wasson et al., 2002). 
Pressure intensity ranged from “very low” impairment correspond-
ing to “Least Impaired River Reaches” (LIRRs; following Dolédec & 
Statzner, 2008; Mondy et al., 2012; Statzner et al., 2005), to “mod-
erate” or “strong” impairment, both corresponding to “Impaired 
River Reaches” (IRRs). We selected IRRs which had been impaired 
by only one main pressure category (water quality degradation or 

F I G U R E  1   Location of the sampled sites. Delineations indicate the main French hydro-eco-regions (Wasson et al., 2002). The number 
in the code name of each sampled site gives information about the triplet of sites to which it belongs (from 1 to 6), whereas the letter 
gives information about its status, either LIRR (“Reference”; “R”) or IRR, exhibiting either a Moderate “M” pressure intensity or a Strong “S” 
pressure intensity (see Materials and Methods for further details). All three sites found in a triplet belong to the same stream type according 
to the French typology of streams (Wasson et al., 2002). Further information about the sites is available in Table S1
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hydrological alteration) over the 2007–2012 period. Sites were a 
priori grouped by triplet within a given stream type, including one 
LIRR and two IRRs, one IRR exhibiting a moderate impairment and 
the other a stronger impairment level.

Macroinvertebrate community sampling occurred in autumn 
2014 and spring 2015. Thirty-six macroinvertebrate field sampling 
events were done following a standardized protocol (French stan-
dard XP T90-333; AFNOR, 2009), commonly used in France in the 
context of the WFD. This protocol advocates the sampling of macro-
invertebrates in eight dominant habitats (i.e., with an individual share 
of at least 5% coverage at reach scale) and four marginal ones (i.e., 
with an individual share of less than 5% coverage) in three succes-
sive phases (Figure 2a). Each habitat is characterized by its substrate 
type (among 12 categories) and its superficial current velocity range 

in front of the substrate (among four categories). Sampled marginal 
substrates (phase A; samples 1–4) and the first four dominant ones 
(phase B; samples 5–8) are selected according to a decreasing gra-
dient of “hosting capacity” (i.e., their ability to support a rich and di-
verse invertebrate assemblage; this gradient is defined by the norm 
XP T90-333). The four other samples performed on dominant sub-
strates (phase C; samples 9–12) are made in proportion to their indi-
vidual benthic coverages. A Surber sampler (net mesh size = 500 µm, 
opening area = 1/20 m2) was used to sample macroinvertebrates in 
each habitat. Samples were preserved in undenatured alcohol (~70% 
final concentration), for up to 1 year. In the laboratory, organisms 
were sorted, numbered and identified at the standardized taxo-
nomic level (standard XP T90-388; AFNOR, 2010). Some individuals, 
difficult to identify at the required taxonomic level (e.g., early instars 

F I G U R E  2   (a) Details about how samples of a given site sampling event were pooled for metric calculation based on the results 
obtained with both the morphology-based standard approach and the bulk-DNA based approach, and details about DNA extractions and 
PCR replications for each bulk sample. *Metrics which take into account taxon abundance (or reads, for bulk data) in their calculation. (b) 
Workflow. Dashed double-arrowed lines indicate comparisons of the results obtained with both the standard approach and the bulk-DNA 
based approach
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or organisms altered during the sampling process), were identified at 
the best taxonomic level possible (i.e., 29 individuals from eight taxa 
over 89,157 individuals caught during the whole study). After taxo-
nomic identification based on morphological criteria, all the sorted 
organisms, that is the "bulk samples" (N = 432), were stored in 95°C 
undenatured alcohol (for up to 1 year) and sent for metabarcoding.

2.2 | I2M2 index calculation

Faunal data (i.e., abundance per taxon × phase × site) were combined 
per site, as indicated in Figure 2a, to calculate the values of the five 
individual metrics aggregated in the I2M2 index (Mondy et al., 2012). 
These five metrics are total taxonomic richness, Shannon–Weaver 
diversity index (Shannon & Weaver, 1963), average score per taxon 
(ASPT; Armitage et al., 1983), and the proportions of ovovivipa-
rous (Ovoviviparity) and polyvoltine (Polyvoltinism) organisms in 
the invertebrate assemblage. The I2M2 index was constructed and 
calibrated over 10 chemical and seven hydromorphological pres-
sure categories (see Mondy et al., 2012, for further details). One 
subindex per pressure category is first calculated as the weighted 
mean of the values of the five metrics, with the weights equal to the 
ability of each metric to discriminate between LIRRs and IRRs for 
this pressure category (quantified by its “discrimination efficiency” 
[DE]; Ofenböck et al., 2004). The final I2M2 index value is then cal-
culated as the arithmetic mean of the 17 subindex values (Mondy 
et al., 2012).

2.3 | Metabarcoding

Bulk samples were homogenized using an IKA ULTRA-TURRAX Tube 
Drive control system with sterile 20-ml tubes and 10 steel beads 
(5 mm Ø) by grinding at 4000 rpm for 15 min (IKA). Complete sam-
ples were then incubated overnight at 56°C in 5 ml lysis buffer (Tris-
HCl 0.1 m, EDTA 0.1 m, NaCl 0.01 m and N-lauroyl sarcosine 1%, pH 
7.5–8.0). Extractions were then completed using the DNeasy Blood 
Tissue Kit (Qiagen), according to the manufacturer's instructions. 
DNA extracts were recovered in a total volume of 300 µl. Two DNA 
extractions were performed per bulk sample. Negative extractions 
without samples were systematically performed to monitor possible 
contamination.

Three primer pairs respectively corresponding to three different 
markers were used for each sample, Inse01 for a mitochondrial 16S 
rDNA region (Elbrecht et al., 2016; Taberlet et al., 2018), Euka02 for 
a nuclear 18S rDNA region (Guardiola et al., 2015) and BF1-BR2 for 
the cytochrome c oxidase I (COI) region (Elbrecht & Leese, 2017). 
DNA amplifications were performed in a final volume of 20 µl, using 
2 µl of extract DNA as template. The amplification mixture contained 
10 µl of Applied Biosystems Master Mix AmpliTaq Gold 360, 0.2 μg/
µl bovine serum albumin (BSA, Roche Diagnostic) and 0.5 µm of each 
primer for COI and 16S primers or 0.2 µm for 18S primers. Two PCR 
(polymerase chain reaction) replicates were amplified for each DNA 

extraction and each primer pair, for a total of four PCR replicates per 
bulk sample. The primers were 5′-labelled with an eight-nucleotide 
tag unique to each replicate (with at least five differences between 
any pair of tags) allowing the assignment of each sequence to the 
corresponding sample during sequence analysis. The PCR mixture 
was denatured at 95°C for 10 min, followed by 35 cycles of 30 s at 
95°C, 30 s at 52°C for COI and Inse01 or 45°C for Euka02 and 1 min 
at 72°C (90 s for COI), and followed by a final elongation at 72°C for 
7 min. Negative PCR controls (ultrapure water, with 12 replicates as 
well) were analysed in parallel to the samples to monitor possible 
contamination during the PCR step.

After PCR amplification, PCR products from the same marker 
were combined in equal volumes and purified using the MinElute 
(Qiagen) purification kit. Purified amplicons were checked by 
high-resolution capillary electrophoresis (QIAxcel System, Qiagen) 
and sent to Fasteris for library preparation and sequencing. Libraries 
were prepared according to the PCR-free MetaFast protocol 
(Taberlet et al., 2018; for further details, see also: https://www.faste 
ris.com/dna/?q=conte nt/metaf ast-proto col-ampli con-metag enomi 
c-analysis), which limits chimera formation. The Inse01 and Euka02 
amplicons (three libraries each) were sequenced on a HiSeq 2500 
platform (Illumina) with a paired-end approach (2 × 125 bp), while 
the COI amplicons (two libraries) were sequenced on a MiSeq plat-
form (Illumina) producing 2 × 250-bp paired-end reads.

2.4 | Workflow for metabarcoding data

Sequences were processed using the obitools software (Boyer 
et al., 2016). Each pair of raw reads was paired end merged with illu-
minapairedend to recover the full amplicon sequences. Pairs of reads 
that did merge with an alignment score above 40 (equivalent to 
aligning 10 bp of maximal quality on both read ends) were discarded. 
For the Euka02 primer, as the read length did not allow us to recover 
the full amplicon sequences for important taxa such as Gammaridae, 
Coleoptera and Trichoptera, pairs of reads whose ends could not 
be aligned (score <40) were concatenated and kept separately for 
further processing. Recovered amplicon sequences were then as-
signed to their respective sample with ngsfilter and dereplicated to 
get MOTUs with obiuniq. MOTUs were then aligned against dedi-
cated reference sequence databases (Ficetola et al., 2020) for each 
primer pair using ecotag. The Euka02 barcodes kept as concatenated 
sequences were processed separately and the alignment score was 
based on combining the alignments obtained for both ends of the 
barcode.

After the taxonomic assignment step, metabarcoding data were 
subjected to subsequent steps of preparation and filtering before 
the ultimate step of I2M2 index calculation (Figure 2b). Discordant 
PCR replicates (i.e., that did not cluster when compared to other 
technical replicates of the same bulk sample) were identified using 
an iterative process. This iterative process was akin to minimizing 
the intrasample distances (between PCR replicates of a given bulk 
sample) while maximizing the intersample distances. At each step 

https://www.fasteris.com/dna/?q=content/metafast-protocol-amplicon-metagenomic-analysis
https://www.fasteris.com/dna/?q=content/metafast-protocol-amplicon-metagenomic-analysis
https://www.fasteris.com/dna/?q=content/metafast-protocol-amplicon-metagenomic-analysis
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of this “min-max” process, the algorithm identified which replicates 
were the most discordant (i.e., the replicates that were too distant 
from the other replicates of the same bulk sample), and it removed 
them before iterating. The assumption of this process is that PCR 
replicates from the same sample should be more similar to one an-
other than to PCR replicates from other samples. To be more spe-
cific, at each iteration all the PCR replicates were projected on a 
2D space using correspondence analysis (implemented in the ade4 
R package; Dray & Dufour, 2007) based on their square root trans-
formed counts. Euclidian distances between all the PCR replicates 
in this 2D space were then computed. Distances were partitioned 
depending on whether they involved PCR replicates of the same 
sample or different samples. These two distance distributions were 
then compared to pinpoint outlier distances for PCR replicates of 
the same sample. PCR replicates responsible for these distances 
were removed and the remaining PCR replicates were used again 
for a new iteration until no PCR replicates had to be removed. 
Respectively, we removed 43.4%, 7.5% and 9.7% of the replicates for 
the primer sets COI, Euka02 and Inse01. PCR replicates were thus 
available for 68.8%, 100% and 97.9% of the bulk samples amplified 
with COI, Euka02 and Inse01, respectively (mean numbers of avail-
able replicates per bulk sample = 2.3, 3.7 and 3.6, respectively for 
COI, Euka02 and Inse01). The remaining PCR replicates were then 
pooled together, by summing the numbers of reads per MOTU found 
across all the replicates, for a given bulk sample.

Next, MOTUs were filtered based on the best identity percent-
age (i.e., the percentage of similarity between the MOTU sequence 
and the closest one identified in the reference database; Ficetola 
et al., 2020), and then, after further sample pooling (Figure 2a), they 
were filtered based on their total number of reads (Figure 2b). For 
the filtering step based on best identity values, we tested several 
thresholds, between 80% and 100%. After this first filtering step, we 
standardized the MOTU data using the reference list of taxa taken 
into account for the calculation of the I2M2 index value (norm XP 
T90-388; AFNOR, 2010). As a result, the reads were either pooled 
by genus, subfamily or family level according to the taxa (or even 
at a higher taxonomic level; e.g., for Oligochaeta), for the MOTUs 
which could be aggregated to the taxonomic level requested by the 
standard. MOTUs identified at a taxonomic level too high to be used 
in the bioevaluation process were removed from the data set (e.g., 
MOTUs such as Metazoa, Neoptera or Holometabola). Figure S1 
gives the remaining total number of reads per PCR replicate at this 
step of the process. We also tested how a uniform sequencing/read 
depth would influence the performance of the markers, by filtering 
out MOTUs with read abundance ≤0.003% per PCR replicate at this 
step of the process. Preliminary analyses had shown that this added 
filtering step has only a negligible effect on the biomonitoring results 
compared to the other filtering steps (namely for best identity and 
minimal number of reads; see the next paragraph). Therefore, the 
results presented in this study do not include this optional filtering 
step.

According to the standard used for index calculation (XP T90-
333; AFNOR, 2010; Figure 2a), the numbers of reads per MOTU 

were further pooled together within each group of four samples 
corresponding to the three successive phases of the field sampling 
protocol (A, B and C, respectively; Figure 2a). A summary of the main 
identified MOTUs by each marker is available in Table S2. Taxa were 
then filtered according to their total number of reads in each pooled 
sample for each marker. We opted for a naive and global approach, 
and systematically tested several threshold values of minimal num-
ber of reads, ranging from 1 to 100 reads, five reads by five reads 
(i.e., 1, 5, 10, 15 up to 100).

As we tested all the possible combinations of threshold values 
for both filtering steps, we obtained a total of 441 data sets for each 
marker (i.e., 21 threshold values for the best identity percentage 
multiplied by 21 threshold values for the minimal number of reads). 
After this step, read data were transformed either in relative fre-
quencies (RFs) or in presence/absence (PA).

2.5 | Marker combinations

For each mode of data expression (either RF or PA) we tested the 
individual marker but also all the different combinations of two (3) 
or three (1) markers. To limit the number of tested marker combina-
tions over all the possible combinations of tested threshold values, 
we first identified the threshold values that could best allow us to 
maximize the correlation (i.e., exhibiting the highest adjusted-R2; see 
next section) between the results obtained with both the standard 
and the bulk-DNA approaches. Thus, we first selected the three 
“best” threshold values of best identity for each individual marker. 
Then, we selected the five best threshold values for the minimal 
number of reads, based on the data sets already filtered with the 
three best identity thresholds previously identified. As a result, we 
obtained 15 data sets (one per combination of best identity thresh-
old × read minimal number threshold) for each individual marker, 
225 data sets (15 × 15 combinations) for each pair of markers (e.g., 
[COI + Euka02]), and 3375 data sets (i.e., 15 × 15 × 15 combinations) 
for the combination of three markers ([COI + Euka02 + Inse01]).

When combining data from different markers, a taxon was con-
sidered as “present” if it was present in at least one of the two or 
three data sets included in the marker combination. For data coded 
in RF, for a given taxon, RF values were averaged over all the data 
provided by the two or three combined data sets.

2.6 | Statistical analyses

The values of the I2M2 index and its five individual metrics were 
calculated for all the available site sampling events, combinations 
of markers and selected thresholds, using relative frequencies of 
reads as a proxy for abundances (i.e., for all the metrics except total 
taxonomic richness and ASPT). For data expressed in presence/
absence, abundance was fixed as equal to one for each identified 
taxon. The values of the bulk-based index (B-I2M2) and its metrics 
were compared to the values provided by the standard approach 
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(“Morphology-based” I2M2; M-I2M2 for the index). These values were 
expressed as ecological quality ratios (EQRs; range [0;1]). Reference 
values, known as “BEST” and “WORST” and needed for the expres-
sion of all the metric values as EQRs, were based on the revised I2M2 
construction data set (see next paragraph) for both the standard and 
the bulk-DNA approaches. We also calculated the discrimination ef-
ficiency (DE; Ofenböck et al., 2004) of the I2M2 index on each data 
set. Here, DE is the relative frequency of IRRs exhibiting I2M2 values 
lower than the first quartile of the distribution of the I2M2 values in 
the LIRRs.

The I2M2 was updated in 2016 thanks to a new and larger avail-
able data set (with 10,074 sampling events, vs. only 4132 sampling 
events in the original data set used in Mondy et al., 2012). Based 
on this new data set, more robust reference and DE values were 
(re)calculated, and combinations of phases used for individual metric 
calculation were revised to optimize the discrimination efficiency of 
metrics (see Figure 2a). In this study we used this revised version of 
the I2M2 (Usseglio-Polatera et al., 2016).

Linear regressions were calculated between the two sets of I2M2 
index values (or individual metric values) obtained with the standard 
and bulk-DNA-based approaches. For each regression we used the 
adjusted R2 as a measure of the variance explained by the model 
(Crawley, 2007). Two other ways of calculating R2 values, based 
on “perfect match” (y = x) regressions, were also explored, but dis-
carded (for further details, see Figure S2 and related comments in 
the Supporting Information).

The distributions of index values provided by both methods 
were statistically compared over all the site sampling events, with 
Wilcoxon signed rank tests for paired data. Friedman rank sum tests 
were used to identify whether the tested thresholds for best identity 
and minimal number of reads (after having selected the best three 
thresholds for best identity) led to significant differences in adjusted 
R2 values over the whole range of tested values. All statistical analy-
ses were done in R (version 3.6.3; R Core Team, 2020).

3  | RESULTS

3.1 | Taxonomic identification

In total, 140 morphotaxa were identified in the 36 site sampling 
events (Figure 3). The bulk data filtered with the lowest threshold 
for best identity (80%) allowed us to recover 75, 66 and 57 of the 
morphotaxa, for the markers COI, Euka02 and Inse01, respectively. 
Twenty-eight morphotaxa were independently recovered by all 
three markers. Forty-one taxa identified based on morphological 
criteria were not recovered by at least one of the markers. Of these 
41 taxa, six were not referenced as such in our marker-specific ref-
erence databases: the phylum Nematoda, the family Rhagionidae, 
and the genera Cyphon, Agriotypus, Capnioneura and Lasiocephala. 
Twenty-eight taxa were obtained by metabarcoding but not based 
on morphological identification: 12 taxa for COI, 15 taxa for Euka02 
and nine taxa for Inse01.

3.2 | Relative frequencies versus presence/absence

We first examined how the mode of data expression (RF or PA) af-
fected the efficiency of metabarcoding-based bioassessment. 
Whatever the mode of data expression, we generally found signifi-
cant and positive linear relationships between B-I2M2 and M-I2M2 
values. For the primer sets COI and Euka02, the relationship was sig-
nificantly higher on RF data than on PA data (Wilcoxon signed rank 
test for paired data; p < .001 for both primer sets; Figure 4a). For 
Inse01, adjusted R2 values were not significantly different between 
RF and PA data (Wilcoxon signed rank test for paired data; p > .05). 
Nevertheless, the primer set Inse01 exhibited the highest adjusted R2 
values with PA data, with a maximum of .738. The maximum adjusted 
R2 values for the primer sets COI and Euka02 were respectively .524 
and .671, with RF data. Based on these preliminary results, we chose 
to focus on data expressed in RFs for the remaining analyses.

3.3 | Threshold selection for markers

We used adjusted R2 to examine how the selected threshold value for 
best identity modified the bioassessment efficiency of each marker. 
The relationship between the adjusted R2 and the tested thresh-
olds for the best identity greatly varied among markers (Friedman 
rank sum tests; p < .001 for each primer set; Figure 5). For COI, the 
thresholds ≤84% of identity provided the best values of adjusted 
R2 (medians > .50; Figure 5a). Adjusted R2 values decreased with 
increasing identity thresholds from 85% to 100%, albeit with a small 
increase of R2 for identity between 96% and 99%. For Euka02, the 
adjusted R2 increased slowly with the threshold values until 96% of 
identity, with all the medians above .61 (Figure 5b), while decreased 
rapidly (median values close to .49) at very high values of identity 
(97%–100%). For Inse01, the adjusted R2 median values globally 
ranged between .58 and .62 for thresholds between 80% and 97% of 
identity. The highest R2 values were observed with identity values of 

F I G U R E  3   Venn diagram showing overlaps among the 
taxonomic lists provided by the standard approach (140 
morphotaxa) and by each primer set. Comparisons were made for 
each primer set at the lowest threshold for both the best identity 
(80%) and the number of reads (1). S = number of different taxa



8  |     MEYER Et al.

98%–100% (Figure 5c). Based on these results, we selected the best 
identity threshold values of 80%, 81% and 82% for COI; 94%, 95% 
and 96% for Euka02; and 98%, 99% and 100% for Inse01 (Figure 5).

The relationships between the adjusted R2 values and the tested 
thresholds for the minimal number of reads exhibited different pat-
terns of change according to the marker and the selected best identity 
threshold (Figure 6). The adjusted R2 varied significantly according 
to the tested thresholds for the minimal number of reads (Friedman 
rank sum tests; p < .001 for each primer set). For COI, adjusted R2 
was >.50 for thresholds equal to 5 and 10, and for thresholds higher 
than 50 reads, but was lower if the selected minimal number of reads 
was equal to 1 or was between 15 and 45 (Figure 6a). For Euka02, 
adjusted R2 increased with increasing minimal number of reads until a 
plateau at about 65 reads (Figure 6b). For both markers, the relation-
ships between adjusted R2 and thresholds for the minimum number 

of reads were similar for all the tested thresholds for best identity. 
The patterns of response of Inse01 were similar for the 98% and 99% 
thresholds for best identity (Figure 6c), but differed from that ob-
tained with a threshold of 100% identity. The highest adjusted R2 val-
ues were observed for all the identity thresholds using thresholds of 
between 50 and 70 reads. Based on these results, the threshold val-
ues 5, 60, 65, 70 and 100 for COI, 80, 85, 90, 95 and 100 for Euka02, 
and 50, 55, 60, 65 and 70 for Inse01 were selected (Figure 6).

3.4 | Biomonitoring efficiency of the bulk-
DNA approach

After having identified, for each marker, the best mode of data 
expression (relative frequencies) and the best ranges of identity 

F I G U R E  4   (a) Boxplots describing the distributions of the adjusted R2 values derived from the linear regressions between the I2M2 
index values calculated based on the relative abundances of taxa (standard approach) versus the I2M2 index values calculated based on the 
bulk-DNA data: (a) based on the presence/absence (PA) or the relative frequencies of reads (RF) of taxa provided by each marker. N = 21 
thresholds for best identity × 21 thresholds for minimal number of reads = 441 values per “marker × data type” pair (i.e., boxplot). Statistical 
differences between PA and RF, for a given marker, were investigated with Wilcoxon tests for paired data, with *** if p < .001 and NS if 
p > .05 (not significant). Each boxplot represents the minimum/Q25/median/Q75/maximum values, respectively. Outliers (open circles) 
are outside the 1.5 interquartile range of the corresponding adjusted R2 value distribution. (b) Based on each combination of markers. 
Read numbers were first transformed to relative frequencies within data provided by each marker separately, before being averaged, 
for each taxon, over the number of combined markers. N = 225 for each pair of markers, and N = 3375 for the combination of the three 
markers. Each boxplot represents the minimum/Q25/median/Q75/maximum values, respectively. Outliers (open circles) are outside the 1.5 
interquartile range of the corresponding adjusted R2 value distribution



     |  9MEYER Et al.

F I G U R E  5   Boxplots of the adjusted R2 
values provided by the linear regressions 
between the values of the standard 
I2M2 and the values of the bulk-DNA 
based I2M2, for each marker (a = COI, 
b = Euka02, c = Inse01) and for different 
thresholds for best identity. Reads were 
expressed as relative frequencies. N = 21 
for each boxplot. Each boxplot represents 
the minimum/Q25/median/Q75/maximum 
values, respectively. Outliers (open circles) 
are outside the 1.5 interquartile range 
of the corresponding adjusted R2 value 
distribution. Boxplots of the thresholds 
selected for the following analyses are in 
grey
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threshold and minimal number of reads, we analysed the global bio-
assessment efficiency of each individual marker and each combina-
tion of markers. We compared the values of the B-I2M2, its related 
metrics and the allocated ecological quality classes with those pro-
vided by the standard approach. We also compared the discrimina-
tion efficiency of the B-I2M2 calculated on each tested combination.

3.4.1 | Biomonitoring efficiency of individual markers

The marker Euka02 provided the best regression between M-I2M2 
and B-I2M2 (Figure 7a) with a best adjusted R2 of .671 for the combi-
nation of thresholds “96%:85” (96% best identity and a minimum of 
85 reads, hereafter abbreviated min.r), among the 15 combinations 
of selected thresholds for Euka02. The best adjusted R2 values were 
.524 and .665 for COI (80%:5 min.r) and Inse01 (100%:70 min.r), re-
spectively and among the 15 combinations of selected thresholds 

for each primer set. The I2M2 values differed significantly between 
morphology-based versus bulk-DNA approaches for all three mark-
ers (Wilcoxon signed rank test for paired data; p < .05; Table 1). 
The ecological quality classes allocated to sites based on both ap-
proaches differed also in many cases: 5/36, 16/36 and 18/36 times 
for Inse01, Euka02 and COI respectively (Table 1). Both COI and 
Euka02 often allocated a worse ecological status to sites compared 
with the morphology-based approach, while Inse01 tended to pro-
vide a good match between ecological classes assigned with both 
approaches (Table 1). The discrimination efficiency of the I2M2 index 
values provided by the bulk-DNA approach with COI (DE = 0.875; 
Table 1) was higher than that obtained with the I2M2 index values 
provided by the standard approach (DEstandard = 0.833), while for the 
other markers the discrimination efficiency was poorer (DE = 0.75 
for both markers).

The values for ASPT and the relative frequency of polyvol-
tine organisms in the invertebrate assemblage (Polyvoltinism 

F I G U R E  6   Values of the adjusted R2 of the linear regressions between the values of the standard I2M2 and the values of the bulk-
DNA based I2M2 for each marker according to different values of threshold for the minimal number of reads, and calculated for the three 
previously selected thresholds for best identity (cf. Figure 5). Reads were expressed in relative frequencies for the calculation of bulk-DNA 
based I2M2. Arrows indicate the five selected thresholds for the minimal number of reads for the following analyses
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in Figure 7) were correctly modelled from bulk-DNA data for 
all the markers. Adjusted R2 ranged from .522 (Euka02) to .779 
(Inse01) for ASPT, and between .457 (Inse01) and .768 (Euka02) 
for Polyvoltinism. The relative frequency of ovoviviparous organ-
isms (Ovoviviparity in Figure 7) was correctly modelled by Euka02 
and COI, with adjusted R2 equal to .398 and .358, respectively, 

but not by Inse01. Richness was correctly modelled by COI (adj-
R2 = .520), but not by Euka02 (adj-R2 < 0) and Inse01. Whatever 
the marker, the bulk-DNA approach did not correctly assess the 
Shannon–Weaver diversity, with adjusted R2 ranging from −.004 
(COI) to .046 (Inse01).

F I G U R E  7   Linear regressions (solid lines) between the values of the I2M2 index (and its associated metrics) calculated from the 
standard versus the bulk-DNA based data, for each marker (a) and combination of markers (b). Results presented are obtained for the best 
combination (= maximum adjusted R2) of thresholds for best identity (first value in parentheses) and minimum number of reads (second 
value), within the range of tested values. All the metric values are expressed in ecological quality ratios (EQRs). Dashed lines (in right-hand 
graphs) are lines with a slope equal to 1. N = 36 (18 streams × 2 years). Top-left values are adjusted R2
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3.4.2 | Biomonitoring efficiency of marker 
combinations

Combining bulk-DNA information provided by different markers im-
proved the match between the standard and bulk-DNA based I2M2 
values (Figures 4b and 7b). The best adjusted R2 between M-I2M2 
and B-I2M2 increased from .671 (Euka02) to .717 when we combined 
all marker information (Figures 4b and 7b). DE values of marker 
combinations ranged from 0.833 (for [COI + Inse01]) to 0.958 (for 
[COI + Euka02] and [COI + Inse01 + Euka02]) (Table 1).

The increased quality of the model was readily explained by an 
increase in the adjusted R2 values for four out of the five individual 
metrics included in the I2M2 index, although some of these increases 
remained modest (Figure 7). The adjusted R2 of total richness and 
the relative frequency of ovoviviparous organisms in the assemblage 
greatly increased from .520 (COI) to .634 [COI + Inse01], and from 
.398 (Euka02) to .610 [COI + Euka02], respectively. In contrast, the 
adjusted R2 of the Shannon–Weaver index and of the relative fre-
quency of polyvoltine organisms increased marginally from .046 
(Inse01) to .064 [Inse01 + Euka02] and from .768 (Euka02) to .770 
[COI + Euka02], respectively. The adjusted R2 of the ASPT index de-
creased for combinations of primer sets from .779 (Inse01) to .710 
[COI + Inse01].

Even if adjusted R2 values increased, ecological quality classes 
allocated to tested sites still differed for 9/36, 8/36, 5/36 and 9/36 
sampling events respectively for [COI + Euka02], [COI + Inse01], 
[Inse01 + Euka02] and for the combination of the three markers 

(Table 1). Globally, the combinations of markers allocated a rather 
worse ecological status than the standard approach (Table 1). Values 
differed significantly between M-I2M2 and B-I2M2 for [COI + Euka02] 
and [COI + Inse01] (paired Wilcoxon's test; both p < .01; Table 1), 
but not for [Inse01 + Euka02] and for the combinations of the three 
markers (both p > .05; Table 1).

4  | DISCUSSION

4.1 | Bulk-DNA and biomonitoring

In this study, our objective was to evaluate the efficiency of bulk-DNA 
metabarcoding of benthic macroinvertebrates to assess the ecologi-
cal status of wadeable streams. We therefore compared results based 
on morphological identification of organisms using a standardized 
protocol (the I2M2; Mondy et al., 2012) to those provided by differ-
ent combinations of metabarcoding markers. We have confirmed the 
usefulness of bulk-DNA metabarcoding for invertebrate-based stream 
bioassessment and have identified several strategies to maximize the 
match between metabarcoding and standard approaches. In addition, 
B-I2M2 and M-I2M2 values matched better for two out of the three 
markers when using the relative number of reads (RF) for each MOTU, 
instead of their presence/absence only. Aylagas et al. (2018) also ob-
served better bioassessment efficiency when using the number of 
reads instead of the presence/absence of MOTUs. Nonetheless, re-
sults from Buchner et al. (2019) and Zizka et al. (2020) have suggested 

TA B L E  1   Summary of the results corresponding to the best match between the standard and the bulk-DNA approaches, obtained with 
each marker and each combination of markers

Wilcoxon 
test

Misclassifications

Worse predicted state
No 
change

Better 
predicted state Total

Bulk data
Adjusted 
R2 DE (p-value) −4 −3 −2 −1 0 +1 +2

COI (80:5) .524 0.875 .000 1 2 3 12 18 18/36

EUKA02 (96:85) .671 0.750 .000 1 13 20 2 16/36

INSE01 (100:70) .665 0.750 .011 1 2 31 2 5/36

COI (80:5) + EUKA02 
(95:85)

.683 0.958 .004 2 5 27 1 1 9/36

COI (80:5) + INSE01 
(100:50)

.712 0.833 .002 1 6 28 1 8/36

INSE01 
(100:50) + EUKA02 
(95:85)

.709 0.917 .181 1 31 4 5/36

COI (80:5) + EUKA02 
(94:85) + INSE01 
(100:50)

.717 0.958 .432 5 27 3 1 9/36

Note: Wilcoxon signed rank tests for paired data and adjusted R2 (from linear regressions) are applied/calculated between the values of the I2M2 index 
obtained with the standard and the bulk-DNA approaches. The deviation between the quality class allocated by both methods, expressed in number 
of classes, is negative if the bulk-DNA-based approach provides a worse evaluation than the standard approach and positive in the opposite case. 
The thresholds for the best identity and for the minimum number of reads corresponding to the best match are respectively provided in parentheses 
for each primer set or combination of markers. DE = discrimination efficiency (higher is better).



     |  13MEYER Et al.

that macroinvertebrate presence/absence data can lead to similar bio-
assesment results when compared to abundance-based data.

The close similarity observed between B-I2M2 and M-I2M2 could 
be explained by the good correlations observed between the values 
of the individual metrics of the I2M2 obtained with both bulk-DNA 
and standard approaches for four out of the five metrics. Several 
studies have confirmed that bulk data would readily allow efficient 
retrieval of metric values initially calculated on data achieved with a 
standard approach (Elbrecht et al., 2017; Emilson et al., 2017; Gibson 
et al., 2015; Serrana et al., 2019).

4.2 | Combining data from multiple markers

Our results also confirmed that combining data from different markers 
improves the appraisal of biodiversity based on bulk samples (Clarke 
et al., 2014; Hajibabaei et al., 2012). Overall, the marker COI (primer set 
BF1-BR2) exhibited the best performance in terms of number of recov-
ered taxa, but stream bioassessment based on COI data alone was the 
least efficient. Combining metabarcoding data obtained with at least 
two different markers has allowed us to increase both the number of 
taxa recovered with metabarcoding and the quality of the bioassess-
ment. Adding data obtained with a third marker increased the number 
of recovered taxa, but not the quality of the bioassessment. We there-
fore suggest that a minimum of two different markers should be used 
for the biomonitoring of streams based on the bulk-DNA metabarcod-
ing of benthic macroinvertebrates.

Moreover, our results have also highlighted that, depending on 
the type(s) of metrics included in a biotic index, the choice of the 
markers should be quite logically also governed by their ability to re-
cover important indicator taxa (e.g., Ephemeroptera, Plecoptera and 
Trichoptera; EPT) in order to minimize the risk of missing such taxa. 
For instance, evaluating the ecological status of French streams with 
the I2M2 index would need a combination of markers able to recover 
Gammaridae (and the generally abundant genus Gammarus). This 
taxon indeed contributes highly to the trait-based metrics “ovovivi-
parity” and “polyvoltinism”, and therefore its absence (when filtered 
out) would explain why both the COI and Euka02 markers exhibited 
drops of their R2 past certain best identity thresholds (respectively 
at 85% and 98%). This observation also confirms the importance of 
the threshold selection step (also addressed in the next section).

4.3 | On the importance of thresholds

We have highlighted the importance of the selected thresholds for 
the best identity value and for the minimal (absolute or relative) 
number of reads when filtering the taxa considered as present in 
the sample during the bioinformatics step of the metabarcoding ap-
proach. Slightly different thresholds can lead to far different results 
in terms of M-I2M2 and B-I2M2 correlations, at least when using 
individual markers, confirming the results observed by Tapolczai 
et al. (2019) for diatoms. Moreover, our results have shown that best 

threshold values were highly different among markers. Therefore, 
to maximize the robustness of metabarcoding-based biomonitor-
ing indices, we suggest the preliminary selection of marker-specific 
thresholds, based (for instance) on correlation tests between me-
tabarcoding data and abiotic information (e.g., metabarcoding-
based index values calculated along a pressure gradient, Tapolczai 
et al., 2019) or biotic information (e.g., between metabarcoding- and 
morphology-based index values, this study).

4.4 | Ecological quality class allocation

The B-I2M2 values efficiently discriminate between least impaired and 
significantly impaired sites, but misclassifications (i.e., differences in 
the ecological quality class allocated by the metabarcoding-based and 
the morphology-based approaches) were observed. Comparing both 
methods, Dowle et al. (2016) indicated that such changes in quality 
class allocation were often due to changes in index values that were 
already close to an ecological quality class boundary. In estuarine and 
coastal sediment, Aylagas et al. (2018) observed changes in the quality 
class allocation for 14 of 18 stations, based on benthic macroinverte-
brate communities. They also identified a lower rate of change for the 
stations allocated to the ecological quality classes exhibiting the widest 
range of values. It should be noted that in our study, the majority of the 
sampling events (22/36) were performed in sites of “high” ecological 
quality (based on their M-I2M2 value), which is also the quality class ex-
hibiting the largest extent. This “high” ecological status of many stream 
sites within the database may also have limited the number of misclas-
sifications compared to other studies. It may as well explain why worse 
evaluations of the ecological status were mainly observed when clas-
sifying site sampling events based on the metabarcoding approach.

In addition, misclassifications were mainly due to discrepan-
cies between the values of the I2M2 metrics calculated with both 
approaches. Such discrepancies were due to: (i) differences in the 
provided taxonomic lists; (ii) differences in the estimated relative 
abundances of taxa (i.e., relative numbers of individuals vs. relative 
numbers of reads); and (iii) inadequacy of the “reference” values 
needed to calculate the EQR (calculations of EQRs, as advocated by 
the WFD, need to normalize metrics values in a 0–1 range, using “ref-
erence” values). Potentially promising prospects for improvement 
will be discussed in the following sections.

4.5 | On individual metrics

Combining data obtained with at least two different markers has al-
lowed us to correctly model the values of four out of the five met-
rics of the I2M2. Namely, we observed good results for the ASPT, 
total taxonomic richness, and relative frequencies of polyvoltine and 
ovoviviparous organisms within the invertebrate assemblage, but 
not for the Shannon–Weaver diversity index. Gibson et al. (2015) 
also observed a lack of significant, positive relationships between 
data obtained with standard and bulk-DNA approaches, for Pielou's 
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evenness and Simpson's dominance indices. In contrast to the 
Shannon–Weaver index, the ASPT calculation only needs informa-
tion on the presence/absence of taxa identified at the family level 
(Armitage et al., 1983). It probably explains the better robustness of 
this metric, and why ASPT still exhibited good correlation between 
values calculated when applying both approaches, even if calculated 
on only two-thirds of the available data on the sampled invertebrate 
assemblage (both the Shannon–Weaver index and the ASPT are cal-
culated on eight sample units over 12, corresponding to only two of 
the three phases; see Figure 2b and Mondy et al., 2012, for further 
details).

As in previous studies (Hajibabaei et al., 2012; Serrana 
et al., 2019), morphotaxa not recovered with metabarcoding were 
often “rare” taxa, that is taxa with fewer than 10 individuals over 
the whole sampling design (observed for 29 out of the 41 missing 
taxa). Among the five individual metrics combined in the I2M2, the 
Shannon–Weaver index and relative frequencies of polyvoltine and 
ovoviviparous invertebrates within the assemblage are the only 
metrics that take into account taxon abundances. Missing the rarest 
taxa seems to have only a limited impact on the calculated values of 
the trait-based metrics, but probably not on those of the Shannon–
Weaver diversity index.

Metabarcoding also identified taxa absent in the morphotaxa 
list. Their overall frequency was moderate (20% of the global fau-
nal list, including both identified morphotaxa and DNA-based taxa) 
when compared, for instance, to the results provided by Serrana 
et al. (2019), who observed nine taxa identified only with metabar-
coding for a total of 20 taxa. Such taxa could in particular lead to 
bias in values of metrics closely depending on taxonomic richness 
(i.e., total richness and Shannon-Weaver diversity in the I2M2). 
Nevertheless, in our study, a non-negligible part of these taxa cor-
responded to taxa identified at heterogeneous taxonomic levels 
among samples, that is at the family level in some samples (e.g., 
Ephemerellidae) and the genus level (e.g., Ephemerella) in other sam-
ples from the same site. This bias could be partially addressed by 
standardizing the taxonomic list at the site scale, instead of at the 
sample scale as is currently done in the data preparation step of the 
I2M2 calculation.

4.6 | On reference values and 
discrimination efficiency

For best managing the potential bias in taxonomic identification and 
abundance estimation when using the bulk-DNA approach (Hering 
et al., 2018), stream-type reference values, “BEST” and “WORST”, 
could have been specifically redefined for the calculation of the 
B-I2M2 index. During preliminary analyses we tested such an ap-
proach, but preliminary results showed that it was not actually per-
tinent: performances were similar, but we actually observed more 
misclassifications in ecological quality class allocation when using 
metabarcoding-specific “BEST” and “WORST” reference values. 
“BEST” and “WORST” values used routinely for the calculation of 

the M-I2M2 were indeed defined per stream type (for “BEST” val-
ues) and on the available national data set (values currently in use 
were defined on a data set containing more than 10,000 site sam-
pling events), whereas “BEST” and “WORST” values could only have 
been defined on our modest bulk data set. Therefore, “BEST” and 
“WORST” values defined for metabarcoding data would have been 
less robust than those used for the M-I2M2, and would have rep-
resented an additional source of discrepancy between B-I2M2 and 
M-I2M2 approaches, in terms of both correlation and ecological sta-
tus assessment.

Similarly, the I2M2 index is calculated as the arithmetic average 
of 17 subindices (one per pressure category), each corresponding to 
the mean of the individual metrics weighed by their respective DE 
for the corresponding category of pressure (Mondy et al., 2012). The 
DE of individual metrics has been calculated at the national scale. 
Here, the sampling design was too small to allow calculating robust 
values of DE specifically allocated to the calculation of bulk-based 
I2M2 values. Defining such DE values in the future should also im-
prove the relationship between M-I2M2 and B-I2M2.

4.7 | Perspectives and conclusion

This study supports the bulk metabarcoding approach as a prom-
ising method for stream biomonitoring based on bulk-DNA from 
benthic macroinvertebrate samples (Aylagas et al., 2014; Beentjes 
et al., 2019; Carew et al., 2013, 2018; Elbrecht et al., 2017; Emilson 
et al., 2017; Gibson et al., 2014, 2015; Hajibabaei et al., 2011, 
2019; Kuntke et al., 2020; Serrana et al., 2019; Zizka et al., 2020). 
However, more work is needed before implementing bulk-metabar-
coding in the routine monitoring of streams. Indeed, we have high-
lighted a series of biases leading to the reclassification of several 
site sampling events in terms of ecological quality class. Solutions 
exist for reducing these biases, and we have focused on several 
of them in the previous sections. For instance, a reference DNA 
barcoding database, including 578 different taxa (62% identified at 
the species level) has been specifically built for this study (Ficetola 
et al., 2020), in order to work with a database as complete as possi-
ble, as recommended by several authors (Aylagas et al., 2014; Hering 
et al., 2018). Several studies (Gibson et al., 2015; Ji et al., 2013; 
Mächler et al., 2019; Serrana et al., 2019; Sweeney et al., 2011) 
have also suggested that new indices could be constructed spe-
cifically on bulk-DNA information for stream bioassessment based 
on macroinvertebrate assemblages, as has already been done for 
benthic diatoms (e.g., Vasselon et al., 2017). On the one hand, even 
if retrieved MOTUs are not assigned to taxa, MOTUs can still be 
used to efficiently discriminate between impaired and reference 
situations (e.g., Emilson et al., 2017). However, this approach would 
need a huge preliminary sampling phase in order to construct a 
new index based on a database that would include the majority of 
the MOTUs that could be recovered, for instance, for any stream 
found at the national scale. On the other hand, when molecular 
methods prove to be mature enough, they could be used to obtain 
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species-level taxonomic lists. Based on these lists, the observed 
and reference values of taxonomy-based and trait-based metrics 
could be refined to further improve the discrimination efficiency 
of DNA-based indices. Other promising sources of DNA for stream 
bioassessment are the ethanol used for sample/invertebrate pres-
ervation (e.g., Hajibabaei et al., 2012; Martins et al., 2020; Zizka 
et al., 2019) or even DNA directly extracted from unsorted sam-
ples (Pereira-da-Conceicoa et al., 2019). Both sources would avoid 
the time-consuming steps of invertebrate sorting and counting. 
Supervised machine learning is another promising approach, as it 
could be used to directly model a standard biotic index value based 
on metabarcoding data (Cordier et al., 2019; Frühe et al., 2020).

Last, one major challenge for an optimal match between stan-
dard and bulk-DNA results in a stream bioassessment context is the 
optimization of taxon abundance estimations. Taxon abundances 
are taken into account in many invertebrate-based bioassessment 
methods (e.g., in all the intercalibrated European methods; Bennett 
et al., 2011). In this study, we did not investigate how to better cor-
relate the relative abundances of morphotaxa in samples with in-
formation provided by the relative numbers of sequence reads. 
However, several studies have shown that the numbers of reads 
could be correlated with taxon abundances or biomasses, albeit fre-
quently with a poor fit (Carew et al., 2013; Deagle et al., 2013; Dowle 
et al., 2016; Elbrecht & Leese, 2015, 2017; Serrana et al., 2019), 
strengthening the idea that better estimating the relative abun-
dances of taxa based on their relative numbers of reads in a bulk 
sample could improve the modelled values of a biotic index.
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