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Abstract
The global biodiversity crisis from anthropogenic activities significantly weakens the 
functioning of marine ecosystems and jeopardizes their ecosystem services. Increasing 
monitoring of marine ecosystems is crucial to understand the breadth of the changes 
in biodiversity, ecosystem functioning and propose more effective conservation strat-
egies. Such strategies should not only focus on maximizing the number of species (i.e., 
taxonomic diversity) but also the diversity of phylogenetic histories and ecological 
functions within communities. To support future conservation decisions, multicompo-
nent biodiversity monitoring can be combined with high-throughput species assem-
blage detection methods such as environmental DNA (eDNA) metabarcoding. Here, 
we used eDNA to assess fish biodiversity along the coast of southern Brittany (France, 
Iroise Sea). We filtered surface marine water from 17 sampling stations and applied 
an eDNA metabarcoding approach targeting Actinopterygii and Elasmobranchii taxa. 
We documented three complementary biodiversity components—taxonomic, phylo-
genetic, and functional diversity—and three diversity facets—richness, divergence and 
regularity. We identified a north/south contrast with higher diversity for the three 
facets of the biodiversity components in the northern part of the study area. The 
northern communities showed higher species richness, stronger phylogenetic overd-
ispersion and lower functional clustering compared to the ones in the southern part, 
due to the higher diversity of habitats (reefs, rocky shores) and restricted access for 
fishing. Moreover, we also detected a higher level of taxonomic, phylogenetic, and 
functional uniqueness in many offshore stations compared to more coastal ones, with 
the presence of species typically living at greater depths (> 300 m), which suggests an 
influence of hydrodynamic structures and currents on eDNA dispersion and hence 
sample composition. eDNA metabarcoding can, therefore, be used as an efficient 
sampling method to reveal fine-scale community compositions and in combination 
with functional and phylogenetic information to document multicomponent biodiver-
sity gradients in coastal marine systems.
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1  |  INTRODUC TION

Human activities constitute major pressures affecting all ecosystems 
by disrupting interdependent abiotic and biotic factors, threatening 
biodiversity (Hooper et al., 2012) and causing loss of genes, species 
and biological function at an alarming rate (Cardinale et al., 2012). 
Marine species and ecosystems are impacted by increasing anthro-
pogenic pressures such as human population growth that leads to in-
creased demand for ocean space and resources (Halpern et al., 2015). 
Coastal areas, characterized by high species diversity and high pro-
ductivity (Watanabe et al., 2018), are affected by human activities 
(Halpern et al.,  2015). Their structural complexity influences the 
local species composition (Pihl & Wennhage, 2002; Tuya et al., 2019) 
and provides refuge space and food resources for species spend-
ing at least part of their life cycle there (Pihl & Wennhage,  2002; 
Kovalenko et al., 2012). Factors such as urban expansion, agricultural 
runoffs, fishing, maritime traffic and industrial pollution alter coastal 
habitats (Gaylard et al., 2020). All these threats are likely to increase 
in the next decades (Pereira et al., 2010), stressing the need to un-
derstand and monitor how ecosystems respond. Expected changes 
concern composition, functioning and services and need to be tack-
led through a holistic approach documenting the three biodiversity 
components (taxonomic, phylogenetic, and functional) and their 
three facets (richness, divergence, regularity; Mason et al.,  2005; 
Pavoine et al.,  2009). Improved tools should facilitate biodiversity 
dynamics assessments through the development of more ethical and 
cost-effective alternatives, such as environmental DNA (eDNA).

Preventing biodiversity declines cannot be based on the sole 
consideration of the species number and their taxonomic identity, 
but also needs to include information on evolutionary history and 
intrinsic biological and ecological features, namely phylogenetic 
and traits (or functional) components of biodiversity (e.g., Albouy 
et al., 2015; Safi et al., 2011). Indeed, not all species share the same 
evolutionary history as some species originate from more recent ra-
diations (Malinsky et al., 2018; Ronco et al., 2021), while others are 
only distant phylogenetic relatives (e.g., Tuatara species diverged 
250 million years ago from its closest snake and lizard extant rel-
ative; Gemmell et al.,  2020). Phylogenetic diversity quantifies the 
evolutionary history in a community modeled through a phyloge-
netic tree derived from morpho-anatomical or genetic differences 
among taxa. The degree of divergence among taxa and the amount 
of unique evolutionary history they convey have gained increasing 
importance in ecology to understand the origin, the distribution 
and the maintenance of biodiversity (Cavender-Bares et al., 2009; 
Mouquet et al.,  2012; Eme et al.,  2020) and in conservation as a 
unique aspect (i.e., evolutionary history) to preserve biodiversity be-
yond species richness (Faith et al., 2004; Forest, et al., 2007; Davis 
et al., 2018; Pollock et al., 2017; Winter et al., 2013; Vane-Wright 

et al.,  1991). Further, species do not all share the same biological 
and ecological features and consequently can play different roles in 
ecosystem functioning (Tilman, 2001; Díaz & Cabido, 2001).

Hence, it is important to consider the functional diversity of a 
given assemblage, which represents “the value and the range of 
species and organismal traits that influence ecosystem functioning” 
(Tilman, 2001) and view organisms as “dynamic entities that interact 
with their environment” (Calow, 1987). Functional diversity is esti-
mated using species traits, which are morphological, physiological, 
behavioral or phenological features measurable at the individual 
level that impact individual fitness via effects on growth, repro-
duction and survival and thus ultimately ecosystem functioning 
(Violle et al., 2007). These traits are linked to ecological functions 
such as mobility, food acquisition, predation, reproduction (Albouy 
et al., 2011; Villéger et al., 2017). Specialized and functionally rare 
species can perform unique ecosystem functions, thus making an 
important contribution to functional diversity (Mouillot et al., 2014). 
In contrast, functional redundancy, defined as several species per-
forming similar functions, also plays an important role in maintaining 
functional diversity by ensuring ecosystem functions continuity over 
time in the face of the potential decline of some species (Mouillot 
et al., 2014), which is referred to as the “insurance hypothesis” (Yachi 
& Loreau, 1999).

Regarding the three biodiversity facets, richness refers to the 
sum of accumulated differences among taxa, divergence represents 
the difference between taxa within an assemblage and regularity re-
fers to the variability in differences among taxa (Tucker et al., 2017). 
In taxonomy, the richness and regularity dimensions are, respec-
tively, the species number and the evenness of the abundance dis-
tribution among species (Pielou,  1966). However, since all species 
are considered equivalent, there is no divergence facet. In func-
tional ecology, functional richness is often estimated as the volume 
in functional space constructed from traits, which is occupied by 
the species in a community (Villéger et al., 2008). Functional diver-
gence quantifies the distance between species within the functional 
space whereas functional regularity is the variability of functional 
distances between species. Documenting the functional divergence 
and regularity within a community helps to understand the degree 
of species aggregation in functional space, which directly informs 
about the level of functional redundancy (i.e., tight packing) or 
uniqueness within the community and provides insight about re-
source partitioning (Myers et al., 2021). In phylogeny, the richness 
dimension corresponds to the overall amount of evolutionary his-
tory in a sampled community (PD; Faith, 1992). Divergence refers 
to the phylogenetic divergence among species while phylogenetic 
regularity quantifies the variation of phylogenetic distances among 
species (Tucker et al., 2017). Coupling phylogenetic divergence and 
regularity offers a better understanding of the influence of old (i.e., 
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deep) vs recent (i.e., terminal) phylogenetic divergence on the evolu-
tionary history of a community (Eme et al., 2020). Even though these 
three facets can be documented at α (within site), β (between sites) 
and 𝛾 (total diversity) biodiversity levels, such a holistic approach is 
yet to be implemented (Tucker et al., 2017).

Documenting the different components and facets of biodi-
versity always depends on the appropriate description of the tax-
onomic composition of communities and thus the reliability of the 
sampling method. Water environmental DNA (eDNA) metabar-
coding is emerging as a method to monitor marine biodiversity and 
may counteract drawbacks inherent to classical sampling methods 
(Deiner et al.,  2017; Polanco-Fernández, Marques, et al.,  2021; 
Taberlet et al., 2018; Thomsen & Willerslev, 2015). To document ma-
rine fish biodiversity, traditional sampling methods are bottom trawl 
surveys (Rochet et al., 2005), video surveys (Boldt et al., 2018), and 
underwater visual census (UVC; Mallet & Pelletier, 2014). However, 
these methods are limited in taxonomic, spatial and temporal cov-
erage (Polanco-Fernández, Marques, et al., 2021) because of their 
dependence on weather conditions, species specificity (Holderegger 
et al., 2020), cost/inefficiency and the damages they can cause that 
raise ethical questions (Trenkel et al., 2019), and importantly, habi-
tat accessibility (bottom trawling is not possible on rocky habitats). 
eDNA metabarcoding in marine environments is based on the re-
covery and analysis of DNA traces that may persist from hours to 
days (Andruszkiewicz Allan et al., 2021; Collins et al., 2018; Holman 
et al., 2021). These DNA traces are the result of species releasing 
DNA via feces, urine, and epidermal cells or correspond to entire 
micro-organisms (Deiner et al., 2016). By collecting water samples, 
amplifying and sequencing DNA, animal presence can be detected 
at a given site (e.g., Afzali et al., 2021; Polanco-Fernández, Marques, 
et al., 2021; Port et al., 2016). This method has several advantages 
compared to traditional sampling methods, as the sampling gear is 
independent of the studied species and not sensitive to weather 
conditions (Holderegger et al., 2020). Furthermore, the use of eDNA 
should ideally improve (i) the detection of rare species (Balasingham 
et al., 2018; Wilcox et al., 2013) (ii) the discrimination of morpholog-
ically similar species (Holdregger et al., 2020) and (iii) the sampling 
of difficult-to-access areas such as rocky shores (Jeunen et al., 2020; 
West et al., 2020; but see Antich et al., 2021). Currently, eDNA me-
tabarcoding is already an effective environmental monitoring tool 
used to detect species in give area (Yates et al., 2019), but whether 
it can reveal fine-scale community structure remains to be investi-
gated (Port et al., 2016), especially in open coastal marine systems 
subject to strong currents (Monuki et al., 2021).

In this study, we used eDNA metabarcoding to assess the taxo-
nomic, phylogenetic, and functional components of fish biodiversity 
in an open coastal marine system to the west of Brittany (France; 
Figure  1). This study area at the crossroad of the Iroise Sea, the 
English Channel, and the Bay of Biscay offers contrasted environ-
mental and fishing conditions. The northern part represents a bio-
geographic transition zone between temperate and cold-temperate/
boreal marine faunal assemblages (Dinter,  2001). It is one of the 
richest coastal areas for marine life in the North Atlantic (Benedetti 

et al.,  2019; Hily & Glémarec,  1999) with a high diversity of ma-
rine ecosystems and habitats including rocky bottom, reefs, ridges 
(Hinschberger & Pauvret, 1968). The Iroise Sea has strong currents 
caused by important differences in depth and the adjacent English 
Channel (Figure 1, Dinter, 2001; Muller et al., 2009). The high cur-
rent speed especially in some areas such as the Raz de Sein, and the 
presence of rocky shoals and reefs (Hinschberger & Pauvret, 1968) 
makes it one of the most dangerous seas in Europe that is difficult 
to access for fishing activities other than with hook and line gears. 
The Audierne Bay (southern part) has lower habitat diversity than 
the Iroise Sea and is characterized by a limited sandy stock resting 
on a very flat bottom (Hénaff et al., 2015). It is a highly productive 
area, supporting a high level of fishing activity allowing a wide range 
of gears such as lines, longlines, nets, trawls, pelagic seines, pots and 
dredges (Boncoeur et al., 2004). For each biodiversity component, 
we considered the three facets (richness, divergence and regularity) 
to provide complementary information on biodiversity patterns. Our 
main objective was to assess how effective eDNA was to document 
small-scale biodiversity gradients in a coastal marine ecosystem 
with contrasted environmental conditions. We hypothesized that 
biodiversity components would be higher in the north of the study 
area where fishing pressure is reduced and habitat complexity is 
high. On the contrary, the highly fished Audierne Bay located in the 
southern part of the study area has less contrasted habitats (Hénaff 
et al., 2015) and is, therefore, expected to have lower biodiversity, 
especially for the functional component.

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The study focuses on the southern Brittany coast (Northeast 
Atlantic), between the Douarnenez and Audierne Bays, in the Iroise 
Sea and in the Bay of Biscay, respectively. The Iroise Sea (northern 
part of the study area; Figure 1), extending between the island of 
Ouessant and the Chaussée de Sein, is a species rich area harbor-
ing a wide range of marine ecosystems and habitats (Hinschberger 
& Pauvret 1968). It became a UNESCO biosphere reserve in 1988 
and since October 2007 a total area of 3500 km2 has been in-
cluded within the Iroise marine park (PNMI, Parc Naturel Marin 
d'Iroise). The Iroise Sea has strong north-easterly currents at high 
tides caused by important differences in depth and the adjacent 
English Channel (Dinter,  2001). The presence of submerged rocks 
and reefs (Hinschberger & Pauvret, 1968), makes this a dangerous 
area restricting fishing activities to hooks and lines. Moreover, the 
formation of the Ushant tidal front from May to October (Morin 
et al., 1985)—separating homogeneous coastal waters from the sea-
sonally stratified offshore waters (Schultes et al., 2013)—influences 
primary productivity and planktonic communities in this area 
(Brandão et al., 2021). The Audierne Bay (southern part; Figure 1), 
extends from the Pointe du Raz to the Pointe de Penmarc'h in the 
Bay of Biscay. In this area, the marine ecosystem is less diverse as 
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the habitat is mostly characterized by flat sandy bottoms (Hénaff 
et al., 2015), while high primary productivity supports a high level of 
fishing activity. Coastal fishing activities represent a large economic 
value in this area, which has two main fishing ports (Audierne and 
Penmarc'h). In 2019 and 2020, the fish auction markets in these har-
bors sold about 8800 tonnes of fish per year for an average value of 
14,000,000 euros per year (FranceAgriMer, 2021).

2.2  |  Sampling

During three days in September 2020 (8–10 September) we sampled 
17 stations, 13 located near the coast and 4 offshore with greater 
depths. The coastal stations were sampled along transects, while 
the strong currents at the offshore stations forced us to sample 
them at fixed points (Figure  1; Appendix  S1). For each station we 
collected two filter replicates in parallel on either side of the boat, 
20–50 cm below the sea surface, corresponding to a total of 34 
filters for the whole area. We followed a precise protocol to sam-
ple eDNA using a setup composed of an Athena® peristaltic pump 

(Proactive Environmental Products LLC; nominal flow of 1.1 L/min), 
a VigiDNA® 0.2 μm cross-flow filtration capsule (SPYGEN; spygen.
com) making it possible to filter 30 L per filter, and separate dispos-
able sterile tubes for each filtration capsule. At the end of filtration, 
the water inside the capsules was emptied and replaced by 80 ml 
of CL1 conservation buffer. The capsules were stored at room tem-
perature (Polanco-Fernández, Marques, et al., 2021). To avoid any 
contamination, we carried out all sampling steps using disposable 
gloves and single-use filtration equipment.

2.3  |  eDNAextraction, amplification, 
sequencing and data processing

DNA extraction, amplification and high-throughput sequencing 
were performed in distinct dedicated rooms set up with positive air 
pressure, UV treatment and frequent air renewal. The eDNA cap-
sules were processed at SPYGEN following the protocol proposed in 
Polanco-Fernández, Marques, et al. 2021. After DNA extraction, we 
tested the samples for inhibition following the protocol described 

F I G U R E  1  Map of the study area off Brittany with the eDNA sample stations. The abbreviations correspond to station names: BA-1 to 7: 
Baie Audierne 1 to 7/SA: Sud Armen/SSA: Sud Sud Armen/CdS(−2): Chaussée de sein/RdS(−2): Raz de sein/T: Tévennec/NT: Nord Tévennec/
BDN: Baie Douarnenez Nord/PdR: Pointe du Raz

http://spygen.com
http://spygen.com
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in Biggs et al.  (2015). If a sample was considered inhibited, it was 
diluted 5-fold before amplification. DNA amplifications were per-
formed in a final volume of 25 μl, using 3 μl of DNA extract as the 
template. The amplification mixture contained 1 U of AmpliTaq Gold 
DNA Polymerase (Applied Biosystems, Foster City, CA), 10 mM 
Tris–HCl, 50 mM KCl, 2.5 mM MgCl2, 0.2 mM each dNTP, 0.2  μM 
of each primer, 4  μM human blocking primer and 0.2  μg/μL bo-
vine serum albumin (BSA; Roche Diagnostic, Basel, Switzerland). 
To perform the amplification, we used the teleo primers (forward: 
ACACCGCCCGTCACTCT, reverse: CTTCCGGTACACTTACCATG) 
that amplify a region of 64 base pairs on average (range 29–96 bp) 
of the mitochondrial 12S region. This primer pair was designed 
to capture teleost taxa (Valentini et al.,  2016) but also captures 
Elasmobranchii taxa (Polanco-Fernández, Richards, et al., 2021). The 
“teleo” primers were 5′-labeled with an eight-nucleotide tag unique 
to each PCR replicate (with at least three differences between any 
pair of tags), allowing the assignment of each sequence to the corre-
sponding sample during sequence analysis. The tags for the forward 
and reverse primers were identical for each PCR replicate. The PCR 
mixture was denatured at 95°C for 10 min, followed by 50 cycles of 
30 s at 95°C, 30 s at 55°C and 1 min at 72°C and a final elongation 
step at 72°C for 7 min. Twelve replicates of PCRs were run per fil-
tration (i.e., 24 per station) to increase the probability of detecting 
rare species (Ficetola et al., 2015; Valentini et al., 2016). After am-
plification, the samples were titrated using capillary electrophoresis 
(QIAxcel; Qiagen GmbH) and purified using the MinElute PCR purifi-
cation kit (Qiagen GmbH). Before sequencing, purified DNA was ti-
trated again using capillary electrophoresis. We pooled the purified 
PCR products in equal volumes to achieve a theoretical sequencing 
depth of 1,000,000 reads per sample. Library preparation and se-
quencing were performed at Fasteris (Geneva, Switzerland). Two li-
braries were prepared using the MetaFast protocol (a ligation-based 
method) and sequenced separately, the paired-end sequencing was 
carried out using a MiSeq (2 × 125 bp, Illumina, San Diego, CA, USA) 
on two MiSeq Flow Cell Kit Version3 (Illumina, San Diego, CA, USA) 
following the manufacturer's instructions. The samples from the dif-
ferent filters were randomly attributed to the two libraries. Two neg-
ative extraction controls and one negative PCR control (ultrapure 
water) were amplified (12 replicates) and sequenced in parallel to the 
samples to monitor possible contamination.

We analyzed the sequence reads using programs implemented 
in the OBITools package (http://metab​arcod​ing.org/obitools; Boyer 
et al., 2016) following the protocol described in Polanco-Fernández, 
Martinezguerra, et al.  (2021). Forward and reverse reads were as-
sembled using the illuminapairedend program with a minimum score 
of 40 and retrieving only the joined sequences. Then we assigned 
the reads to each sample using the ngsfilter program and created a 
separate data set for each sample by splitting the original data set 
into several files using obisplit. After this step, we analyzed each rep-
licate sample individually before merging the taxon list for the final 
ecological analysis. Strictly identical sequences were clustered to-
gether using obiuniq. We removed sequences shorter than 20 bp or 
with occurrence lower than 10 or labeled “internal” that correspond 

most likely to PCR substitutions and indel errors, by applying the obi-
clean program. Taxonomic assignment of the MOTUs was performed 
using the program ecotag with the sequences extracted from release 
142 of the European Nucleotide Archive (ENA) database (stan-
dard sequences). We assigned sequences at different taxonomic 
levels: species (match > 98%), genus (96% < match  ≤ 98%), family 
(90% < match  ≤  96%) (Marques et al., 2020). Considering the incor-
rect assignment of a few sequences to the sample due to tag jumps 
(Schnell et al., 2015), we discarded all sequences with a frequency 
of occurrence <0.001 per sequence and per library. We further cor-
rected for Index-Hopping (MacConaill et al., 2018) with a threshold 
empirically determined using experimental blanks (i.e., combinations 
of tags not present in the libraries) between libraries. This index re-
moves all reads present in plates where the combination of tags is 
not present in the library and is later applied for each plate position.

The 34 eDNA filters yielded a total of 13,671,669 reads with an 
average of 402,108 reads per filter (SD = 207,481). Among the 86 
taxa detected, 38 were assigned at the species level, 29 at the genus 
level, 16 at the family level and 3 at even higher level. Next, we re-
moved taxa that were poorly assigned such as at family level or above 
(e.g., Eupercaria, Carangidae, Clupeocephala) with no representative 
species detected in our data set, as well as some genera/families of 
which some representative species had been detected at the species 
level. For example, the genus Leucoraja was removed but remained 
represented by Leucoraja circularis, Leucoraja naevus and Leucoraja 
fullonica. We removed the Scyliorhinidae family but remained repre-
sented by Scyliorhinus canicula. We also removed fish taxa that do not 
occur in the study area, such as Lutjanidae, which have only tropical 
and subtropical species (Froese & Pauly, 2021) and the Oreochromis 
genus with only freshwater and brackish water species (Froese & 
Pauly,  2021). These false-positive detections correspond to spe-
cies genetically related to Atlantic ones that were missing from the 
sequence database. We finally retained 52 taxa, including 41 acti-
nopterygians and 11 chondrichthyans. We assigned 37 of them at the 
species level, 14 at the genus level and one at the family level.

We tested for sample replicability by analyzing the variation in 
species composition between the two replicates from each station 
(Appendix S2). To do so, we calculated the Jaccard's (1912) dissim-
ilarity index based on presence–absence (β jac), which represents 
the proportion of unique taxa within sampling units (here, filters; 
Baselga,  2010). This index ranges from 0, when the two sampling 
units are composed of identical taxa, to 1 when they are composed 
of distinct taxa. Furthermore, the Jaccard's dissimilarity index can 
be decomposed into two additive and antithetic components, the 
taxa turnover and the nestedness-resultant dissimilarity, hereafter 
referred to as nestedness (Baselga,  2012). The taxa turnover cor-
responds to the replacement of taxa by others between sampling 
units, while the nestedness quantifies the dissimilarity in taxa com-
position driven by the richness difference between sampling units 
when the poorest sampling unit is a subset of the richest sampling 
unit (Baselga, 2012). A good replication quality would result in a low 
overall dissimilarity (β jac) between filters, mostly driven by the nest-
edness component, indicating that the two filters globally detected 

http://metabarcoding.org/obitools
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the same species composition. The good dissimilarity results (see re-
sults section 3.1) allowed us to pool the two filters for each station 
and consider a single taxa composition for each station in subse-
quent analyses.

2.4  |  Diversity indices calculation

2.4.1  |  Taxonomic indices

Using the filtered taxa table (containing 52 taxa), we captured the 
taxonomic richness facet -hereafter referred to as species rich-
ness- of each sampling station based on taxa presence. However, 
as the eDNA method cannot yet reliably quantify taxa abundance 
(Polanco-Fernández, Marques, et al.,  2021; Stoeckle et al.,  2020; 
Thomsen et al., 2016), it precludes the regularity facet assessment. 
Moreover, we computed taxonomic β-diversity indices between the 
17 stations based on presence–absence Jaccard's dissimilarity index 
and its two additive components: taxa turnover, and taxa nested-
ness (Baselga, 2012).

2.4.2  |  Functional traits collection and functional 
index calculations

To collate functional traits linked to key ecosystem functions, we 
extracted information for seven traits from the FishBase database 
(Froese & Pauly,  2021). These traits were average depth, depth 
range (m) and the position in the water column divided into four 
modalities (pelagic, bathypelagic, demersal, bathydemersal), which 
refer to the ecological habitat. These traits can be used as proxies 
for vertical mobility, space occupation, biotic interactions and physi-
ological responses (Brown & Thatje, 2014, Villéger et al., 2017). The 
traits trophic level, body shape (flat, short, fusiform, or elongated) 
and maximum length (four levels: 6–26 cm, 26–79 cm, 79–100 cm, 
100–460 cm) are linked to food acquisition, mobility and predation 
functions. The reproduction trait was divided in seven categories 
related to reproduction mode (dioecy/protogyny/protandry), fertili-
zation mode (internal/external) and type of parental care (maternal/
paternal/none) (see Appendices S3 and S4).

The taxa table contained presence information at different tax-
onomic levels. For fish identified at genus (14/52) or family (1/52) 
level, we listed all species belonging to these genera/families 
that live in the Northeastern Atlantic, based on the literature and 
“Fishbase”. To get a better appraisal of the variability of the func-
tional diversity within and among communities related to taxonomic 
identification uncertainty, we randomly selected one representative 
species from the regional species list for each of the 15 (14 genus + 1 
family) taxa. Repeating this 100 times resulted in 100 traits tables. 
We calculated Gower's distance between pairs of species based on 
the seven functional traits in the 100 traits tables. This distance 
metric allows mixing different types of traits while giving them equal 
weights (Gower, 1971; Villéger et al., 2013). Then, we carried out a 

Principal Coordinates Analysis (PCoA) on each Gower matrix. To re-
duce computation time and convergence problems due to numerical 
instability, while maintaining quality of representation we decided to 
keep species coordinates for the first five axes for α-diversity indices 
according to the framework proposed by Maire et al. (2015) and for 
the first two axes for β-diversity indices. We then computed 100 
multivariate functional spaces based on the 100 PCoA.

We calculated several indices for each of the three facets of func-
tional α-diversity. To document the functional richness facet, we cal-
culated the Fric index corresponding to the volume defined by the 
convex hull polygon of the species present in the synthetic functional 
space (Villéger et al., 2008). This metric could be positively correlated 
with the species richness (SR) in taxonomy. For a given SR, a high Fric 
value means that species tend to be functionally distinct while a low 
value indicates that they are more functionally similar (clustered). To 
measure the divergence and the regularity dimensions we worked 
directly with the Gower distance matrix to avoid loss of information 
associated with the dimensionality reduction by the PCoA. For the 
divergence dimension, we calculated the Mean Pairwise Functional 
Distance index (MPFD) corresponding to the mean functional distance 
between all species pairs (Myers et al., 2021). Finally, we measured 
functional regularity with the Variance in Pairwise Functional Distance 
(VPFD) index, quantifying the regularity of the functional distances 
among species (Myers et al., 2021). We then decorrelated the differ-
ent functional metrics from SR by computing their Standardized Effect 
Size (SES) values. For this we subtracted the mean metrics value across 
1000 random functional associations between species and their traits 
(null model) and dividing by the standard deviation of these null model 
metrics values. The SES metrics values helped to identify pairs of sam-
pling stations that were functionally clustered or overdispersed, re-
gardless of their SR. Assuming normality, SES values greater than 1.96 
indicate significant overdispersion at a 5% test level, while SES values 
below −1.96 indicate significant spatial clustering of species with cer-
tain traits (Leprieur et al., 2012).

We estimated functional β-diversity indices using the taxo-
nomic equivalent Jaccard dissimilarity index (see part 2.4, Villéger 
et al.,  2013). Functional β -diversity can be decomposed into two 
additive components: functional turnover, referring to the replace-
ment of functional strategies between communities (stations) within 
the multidimensional functional space, and functional nestedness 
defined as one of the communities hosting a subset of the functional 
strategies presents in the other one (Villéger et al.,  2013). Finally, 
we calculated the mean and the standard deviation of each index 
for each station across the 100 traits tables (Appendix S5). All di-
versity indices were computed using the “mFD” package (Magneville 
et al., 2021) in R software.

2.4.3  |  Phylogenetic indices

Phylogenetic diversity estimation is based on phylogenetic trees 
at the species level. To document the phylogenetic diversity of the 
15 taxa identified at the genus or family level in our taxa table, we 



    |  7ROZANSKI et al.

chose one representative species belonging to these taxonomic lev-
els. We based our choice on the hypothesis that each genus/family 
forms a clade (a monophyletic group) whose species have diverged 
the same amount of time from their common ancestor in the phy-
logenetic tree. Therefore, the choice of one species over another 
does not modify the results. We used the recently updated molecu-
lar phylogeny for Actinopterygii published by Rabosky et al. (2018) 
as a backbone tree including 37 species out of the 41 taxa present 
in our data set. We re-grafted the remaining 4 species on the back-
bone tree based on their taxonomic affinities and a list of taxonomic 
constraints by using the recent phylogenetic classification of bony 
fishes (Betancur et al., 2017). We randomly sampled the waiting time 
(i.e., branch length) for the four species from an exponential distribu-
tion based on the birth-death model parameters estimated by maxi-
mum likelihood from a larger tree (Nee et al., 1994). This tree was 
extracted from the molecular phylogeny of Rabosky et al. (2018) and 
includes 176 species found in the Bay of Biscay and Celtic Sea. We 
repeated this procedure 100 times to generate a distribution of fully 
sampled phylogenetic trees including 41 species to account for the 
phylogenetic uncertainty related to the re-grafting procedure. This 
procedure avoided spurious branching of several re-grafted species 
found in the collection of mega-phylogenies published by Rabosky 
et al. (2018). For the 11 chondrichthyans, we used a subset of 100 
trees of the recent mega-phylogeny published by Stein et al. (2018). 
Finally, we built a single set of 100 phylogenetic trees including both 
clades (i.e., Actinopterygii and Chondrichthyes) and 52 species using 
a conservative and young divergence estimate between the clades 
of 420.7 Ma (Benton et al., 2015, Stein et al., 2018).

We calculated three indices to assess the three facets of phy-
logenetic diversity (Appendix S6). To document the richness facet, 
we used Faith's phylogenetic diversity (PD, Faith,  1992), which 
represents the sum of branch lengths linking all observed species 
in the phylogenetic tree. As this metric is positively correlated with 
species richness (SR; Tucker & Cadotte,  2013), a community with 
many species could lead to a high PD value, even if the species were 
phylogenetically clustered. Thus, for a given SR, higher PD indicates 
that the species are more phylogenetically dispersed, while a lower 
PD indicates that they are phylogenetically more clustered (Davies 
et al., 2007). We computed divergence using the phylogenetic Mean 
Pairwise Distance (MPD) metric corresponding to the average phy-
logenetic distance among species (Tucker et al., 2017). MPD is influ-
enced by ancient diversification events meaning if some processes 
have produced a basal clustering/overdispersion in the phylogenetic 
tree, the MPD would reveal it (Mazel et al., 2016). We assessed the 
regularity dimension by applying the Variance in Pairwise Distance 
(VPD) measuring the variance in phylogenetic distances among spe-
cies (Clarke & Warwick,  2001; Eme et al.,  2020), an index captur-
ing more complex phylogenetic structure such as the presence of 
distinct old lineages with recent clusters of closely related species 
(Zintzen et al., 2011; Eme et al., 2020).

We decorrelated the phylogenetic indices from SR by the com-
putation of SES values based on a null distribution of 1000 trees, 
shuffling the species names at the tips of the phylogenetic trees. We 

used the 95% percentile interval of a normalized Gaussian distribu-
tion to detect significant phylogenetic clustering or overdispersion 
(see part 2.5.2). We then carried out a normalized PCA on all seven 
taxonomic, functional and phylogenetic alpha indices and computed 
the pairwise non-parametric Spearman's correlation coefficients to 
determine their dependence (Appendix S7).

At the regional scale (β-diversity), we computed the UniFrac 
dissimilarity index, which is equivalent to the taxonomic Jaccard 
index (Leprieur et al.,  2012; see part 2.4). As such, it also varies 
between 0 (all species of the two communities share the same 
phylogenetic history) and 1 (the species of the two communities 
do not share any phylogenetic history). The UniFrac index can be 
decomposed into two additive components. The UniFrac Turnover 
(UniFracTurn) quantifies the relative proportion of unique phyloge-
netic lineages between communities that is not attributable to their 
difference in Phylogenetic Diversity (PD, Leprieur et al., 2012). The 
UniFrac Phylogenetic Diversity (UniFracPD) component measures 
the amount of phylogenetic differences between phylogenetically 
nested communities (i.e., communities sharing at least one branch 
within a rooted phylogeny; Leprieur et al.,  2012). We computed 
all β-diversity indices using the “Betapart” package in R (Baselga 
et al. 2021). Finally, we calculated the mean and the standard devia-
tion of each index across the 100 phylogenetic trees (Appendix S6).

2.4.4  |  Hill numbers

We used the unifying concept of Hill numbers (Hill, 1973; Jost, 2006) 
to document the richness facet of the three biodiversity compo-
nents. Hill numbers measure the effective number of units in a sam-
ple, either species number in taxonomy, or branch-length segments 
in phylogeny, or functional distances in functional diversity, and 
account for species occurrence and/or abundance within a single 
framework (Chao et al. 2014). Hill numbers are based on the param-
eter q that determines the sensitivity of the measure to the relative 
abundance of the diversity unit used, as follows: qD =

(

∑s

i=1
p
q

i

)

1

1−q

where S is the number of diversity units in the assemblage and 
pi the relative abundance of this unit. If q equals 0, abundances are 
not accounted for. If q equals 1 or 2, abundances are accounted 
for but with different weights for common vs. rare units (Chao 
et al.,  2014). Our study was only based on taxa occurrences, as 
such, we only used Hill numbers with q = 0 to capture functional 
and phylogenetic diversity. Note that for q = 0, the taxonomic Hill 
number corresponds to species richness (Chao et al.,  2014). We 
calculated the functional Hill number that measured the effective 
number of paired species distance units (Chao et al., 2014) from the 
Gower distance matrix, which offers the advantage to consider the 
whole functional space and not only a synthetic functional space 
as for the Fric index. Moreover, we calculated the phylogenetic Hill 
number that represents the effective number of unit-branch length 
segments of a phylogenetic tree (Chao et al., 2014). As for tradi-
tional phylogenetic and functional indicators, we decorrelated the 
phylogenetic indices from SR by the computation of SES values.
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2.5  |  Regional β-diversity comparison

To identify the degree of uniqueness of each station in terms of tax-
onomic, phylogenetic or functional diversity, we used a β-diversity 
approach. We considered the average values of taxonomic, phy-
logenetic, and functional β-diversity (and its two components) for 
each sampling station by computing the mean of the pairwise com-
parison between each station and the 16 others weighted by the 
inverse of the geographic distance between stations. This weight-
ing gave more importance to changes occurring between the focal 
station and the nearest neighbors compared to more distant ones 
(Leprieur et al., 2011; Villéger et al., 2013). We performed a sequen-
tial K-means approach for identifying the number of station groups 
(2–16 groups tested). We computed several indices to choose the 
most probable number of groups by using the “NbClust” R package 
(Charrad et al., 2014) and retained as optimal four groups. We then 
performed a non-normalized Principal Component Analysis (PCA) 
using the six turnover and nestedness-resultant components linked 
to taxonomy, phylogeny and functional diversity. The four groups 
were highlighted on the first two axes of the PCA.

3  |  RESULTS

3.1  |  Variation in species composition between 
replicates

When analyzing the variation in species composition between 
the replicate filters collected at each station, we noticed that 
the overall dissimilarity β jac rarely exceeded 0.2, meaning filters 
from the same station were on average more than 80% similar 
(Appendix S8). However, some stations showed higher values such 
as Baie Audierne 3 (BA-3) and Nord Tévennec (NT), respectively, 
reaching 0.37 and 0.42, indicating approximately 40% difference 
in species composition between the replicates. Nevertheless, 
these differences were mainly driven by nestedness (β jne) account-
ing for 66% for BA-3 and 100% for NT, meaning that the poorer 
filter mostly contained a subset of species present in the richer fil-
ter, which is in agreement with a good replication level. For several 
other stations, the low dissimilarities observed between replicate 
filters were mainly explained by the species turnover component 
β jtu (e.g., BA-1, BA-2, CdS, CdS-2) indicating a replacement of spe-
cies. However, all replacement rates were low, with a maximum 
value of 20% reached at the Chaussée de Sein (CdS). Due to the 
good replication level, we pooled the results of both filters for 
each station into a single species list.

3.2  |  α-Diversity indices

The map of the three facets of the biodiversity components and 
richness revealed a clear spatial pattern (Figure 2). Stations in the 
Iroise Sea had higher species richness, divergence and regularity 

indices for each component compared to stations in the southern 
part (Figure 2a,b).

Considering the richness facet, the stations with the highest num-
ber of species were Tévennec (T) and Raz de Sein 2 (Rds-2; SR = 25 
for both), followed by Raz de Sein (RdS; SR = 24) and both station on 
the Chaussée de Sein (CdS; SR = 22 for both; Figure 2a,c). The same 
stations displayed the largest evolutionary history with SES values 
of phylogenetic diversity (SES.PD) highest in these communities 
regardless of their high SR. Although none of the diversity values 
supported a significant phylogenetic overdispersion (Figure  3), we 
still noticed a contrast between northern and southern stations. The 
highest values of SES.PD were found in the Iroise Sea at the Raz de 
Sein (SES.PD = 1.11) followed by CdS (SES.PD = 0.99) and Tévennec 
(SES.PD = 0.80; Figure 2c, Figure 3). In contrast, the stations con-
taining the lowest number of species were Baie Audierne 2 (BA-2, 
SR  =  7) and 3 (BA-3, SR  =  9) and Sud Sud Armen (SSA, SR  =  13; 
Figure 2; Appendix S9), all located in the southern part of the study 
area. These stations also had a low SES.PD (SES.PDBA-2 = −0.47, SES.
PDBA-3 = −0.47, SES.PDSSA = −1.03; Figure 3), reflecting the lower 
amount of evolutionary history represented by the species pres-
ent, but any such phylogenetic clustering remained non-significant 
(Figure  3). The alternative measure of richness based on the SES 
phylogenetic Hill number (SES.HillP_q0) showed the same spatial 
trend as SES.PD (Figure 3).

Considering functional richness, in the Iroise Sea, Tévennec (T) 
had the highest SES.Fric (Figure 2a,c) with the highest functional vol-
ume and richness, significantly higher than under the null model thus 
indicating functional overdispersion, compared to all other stations 
(SES.Fric = 7.82; Figure 3). Conversely, the stations in the Audierne 
Bay, BA-4 and BA-6, had the lowest functional richness measured 
with SES.Fric (Figure 2a,c; Appendix S9) which indicated significant 
clustering (SES.FricBA-4 = −3.51 and SES.FricBA-6 = −6.71; Figure 3). 
Even if the SES.Fric was slightly higher in the Iroise Sea (mean SES.
Fric = −0.75) than in the southern area (mean SES.Fric = −1.54), func-
tional richness revealed clustering for most of the station through-
out the study area (Figure 3); such clustering was even stronger for 
the SES of the functional Hill number (SES.Hillf_q0).

We assessed the divergence and regularity facets using two 
couples of SES metrics that are strongly correlated (SES.MPD and 
SES.VPD for the phylogeny component: ⍴ = 0.99, p = 8.68 × 10−6, 
S = 10, df = 15; SES.MPFD and SES.VPFD for the functional com-
ponent: ⍴ = 0.88, p = 2.2 × 10−16, S = 102, df = 15; Appendix S7). 
The functional divergence (based on Mean Pairwise Functional 
Distances: SES.MPFD) and regularity (based on the Variance of 
Pairwise Functional distance: SES.VPFD) showed clustering values 
(Figure 3). These stations contained species that were closely re-
lated and regularly spaced (i.e., low SES.VPFD) in the functional 
space. The stations Tévennec and Raz de Sein 1 and 2, in the Iroise 
Sea and the site Sud Armen (SA) all presented slight overdisper-
sion for SES.MPFD with values reaching 0.50, 0.09, 0.16 and 0.51, 
respectively, but none of them was significant (Figure 3). In terms 
of regularity, the same stations exhibited some overdispersion: 
the three in the Iroise Sea were also non-significant (SES.VPFD 
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between 0.49 and 0.56) while SA and BA-1 in the south were sig-
nificantly overdispersed, with SES.VPFD, respectively, reaching 
2.13 and 3.30 (Figure 3). In the south, 88.9% of the station, mostly 

located in the Audierne Bay, were clustered in terms of SES.MPFD, 
among those 71% significantly: BA-2 to BA-6 (SES.MPFD between 
−4.98 and −1.30) and SSA (SES.MPFD = −5.17). Furthermore, all 

F I G U R E  2  Overview of the spatial distribution of standard effect size (SES) values of richness, divergence and regularity indices for 
each biodiversity component in the study area. The abbreviations correspond to station names: BA-1 to 7: Baie Audierne 1 to 7/BDN: Baie 
Douarnenez Nord/CdS(−2): Chaussée de sein/NT: Nord Tévennec/PdR: Pointe du Raz/RdS(−2): Raz de sein/SA: Sud Armen/SSA: Sud Sud 
Armen/T: Tévennec. (a)—PCA of SES values of α-diversity indices. The color gradient represents the α-diversity indices range, from blue 
(minimum) to red (maximum). Arrows represent SES values of functional richness (FRic), phylogenetic diversity (PD), species richness (SR), 
mean pairwise phylogenetic distance (MPD), mean pairwise functional distance (MPFD), variance in pairwise phylogenetic distance (VPD) 
and variance in pairwise functional distances (VPFD). (b)—spatial distribution of the α-diversity gradient in the study area based on PCA 
colors. (c)—spatial distribution of richness facets for each component (we displayed a subset of the most representative stations, radar charts 
of all stations are availables in Appendix S9). The radarcharts range from 0 (center) to 1 (vertices)
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these stations showed significant clustering for SES.VPFD, nota-
bly BA-2, BA-3 and SSA (SES.VPFD, respectively, reaching −3.53, 
−3.19 and −2.24, Figure 3).

Considering the phylogenetic diversity components, the SES.
MPD and SES.VPD metrics presented similar results for all stations 
with 82.5% of stations showing overdispersion for both indices, 
among which 60% were significant (Figure 3). The pairwise distances 
between species in the phylogenetic tree were high on average and 
variable, implying the presence of species belonging to very distinct 
phylogenetic lineages as well as of several species phylogenetically 

closely related (belonging to the same lineage). The stations maxi-
mizing SES.MPD and SES.VPD were significantly overdispersed and 
mostly located in the Iroise Sea, such as CdS (SES.MPD = 3.65, SES.
VPD = 2.51), RdS (SES.MPD = 3.69, SES.VPD = 2.62), RdS-2 (SES.
MPD = 3.75, SES.VPD = 2.65). The lowest values of SES.MPD and 
SES.VPD were found in the south, in SSA (SES.MPD = −0.73, SES.
VPD = −0.72), BA-3 (SES.MPD = −0.22, SES.VPD = −0.71) and BA-2 
(SES.MPD  =  −0.21, SES.VPD  =  −0.57), with none being signifi-
cantly clustered (Figure 3). Maps of observed indices are available 
in Appendix S10.

F I G U R E  3  Comparative heatmaps of functional and phylogenetic standard effect size (SES) values of α-diversity indices. The bold line 
separates the two groups of stations: the names in black correspond to southern stations while the purple ones correspond to northern 
stations (inside the Iroise Marine Park). The levels of clustering and overdispersion were displayed using thresholds of 95% and 90% for 
SES values. Significant clustering (or overdispersion) means that the observed values are significantly lower (higher) than under the null 
distribution. The metric names correspond to: MPFD = mean pairwise functional distance; VPFD = variance in pairwise functional distance; 
FRic = functional richness; HillF_q0 = Functional Hill numbers of order 0 (number of species-pair distance unit); MPD = mean pairwise 
(phylogenetic) distance; VPD = variance in pairwise (phylogenetic) distance; PD = phylogenetic diversity; HillP_q0 = Phylogenetic Hill 
numbers of order 0 (number of unit-branch-length segments)
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3.3  |  β-Diversity indices

Comparisons between the taxonomic, functional and phylogenetic 
β-diversity indices highlighted four groups of stations (Figure 4). In 
group 1, four stations showed strong overall dissimilarities and had 
maximized turnover components (group 1; Figure 4, Appendix S11). 
Most stations in this group (75%) were in deeper waters near the 
Chaussée de Sein (CdS, CdS-2 and SA). These stations contained 
the most unique species, functional strategies and phylogenetic 
lineages compared to the other groups. Group 2 and 3 minimized 
dissimilarities compared to group 1, but they did so differently 
for the two dissimilarity components. Group 2, composed of four 
neighboring stations (T, RdS-1, RdS-2, PdR) in the Iroise Sea, had 
species and functional turnover minimized, reflecting that spe-
cies and functions from this area were also found in most other 
stations (yellow; Figure 4). Group 3 showing intermediate values 

of turnover and minimum nestedness was composed primarily of 
Audierne stations (BA-1, BA-5, BA-6, BA-7, NT, BDN), indicating 
that these stations had few different species, lineages and func-
tions (red; Figure 4). Lastly, the three stations making up group 4, 
all located in the southern part of the study area, had the highest 
nestedness component especially for the functional index (SSA, 
BA-2, BA-3), thus containing subsets of species, phylogenetic line-
ages and mostly functional strategies that were also found in other 
stations (purple; Figure 4).

4  |  DISCUSSION

In this study, we showed that environmental DNA (eDNA) is an ef-
ficient alternative method for detecting fine-scale multicomponent 
diversity patterns for fish in an environmentally contrasted coastal 

F I G U R E  4  Principal component analysis (PCA) of taxonomic, functional and phylogenetic 𝛽-diversity respective turnover and nestedness-
resultant components (𝛽jac = 𝛽jtu + 𝛽jne) for the 17 stations. The first two axes are accounting for 93.4% of total inertia. The abbreviations 
correspond to station names: BA-1 to 7: Baie Audierne 1 to 7/BDN: Baie Douarnenez Nord/CdS(−2): Chaussée de sein/NT: Nord Tévennec/ 
PdR: Pointe du Raz/RdS(−2): Raz de sein/SA: Sud Armen/SSA: Sud Sud Armen/T: Tévennec
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marine area off Brittany. The use of water eDNA metabarcoding 
combined with functional and phylogenetic information enabled 
detecting sharp biodiversity variations over small spatial distances 
and discriminating between two distinct areas, the Iroise Sea and 
the Audierne Bay. In the Iroise Sea, taxonomic, phylogenetic, and 
functional biodiversity components were generally larger compared 
to southern stations. The use of three complementary biodiversity 
facets—richness, divergence and regularity—revealed contrasted 
patterns for phylogenetic and functional biodiversity components. 
Fish communities in the Iroise Sea had higher species richness, 
showed stronger phylogenetic overdispersion and lower functional 
clustering for the three facets than communities in the Audierne 
Bay. Therefore, the eDNA approach enables detection of multicom-
ponent diversity gradients based on species occurrences in coastal 
marine ecosystems.

4.1  |  Fine-scale diversity patterns

Our results showed that the eDNA metabarcoding method can 
reveal fine-scale (i.e., 5–30 km) diversity contrasts in an open 
coastal marine ecosystem. We detected higher α-diversity for the 
three biodiversity components for the sampling stations located 
in the Iroise Sea compared to the stations located a few kilom-
eters further south in the Audierne Bay. The sensitivity analyses 
for α-diversity estimates showed that the observed patterns were 
robust to the removal of elasmobranchs (for actinopterygian pat-
terns see Appendix  S12) and the variability in species detection 
rates between replicates within stations (Appendix S13). Our re-
sults agree with previous studies showing the efficiency of the 
eDNA method to detect fine-scale variations in species richness 
and taxonomic composition of marine vertebrates along a 2.5 km 
transect in a kelp forest ecosystem (Port et al., 2016), and within 
a 11 km2 coastal area in Maizuru Bay (Yamamoto et al.,  2017). 
The ability to detect such fine-scale diversity patterns, at least in 
temperate regions, indicates that organismal DNA excretion for 
macro-organisms such as fish overcomes degradation and trans-
port forces (Port et al., 2016), which could open the way to routine 
use of eDNA to monitor marine ecosystems (Polanco-Fernández, 
Martinezguerra, et al., 2021; Stat et al., 2017). Contrary to previ-
ous studies focusing on taxonomic diversity alone, we used the 
eDNA approach to develop a more holistic perspective on biodi-
versity by documenting the three facets of functional and phylo-
genetic diversity components.

The higher levels of taxonomic, functional and phylogenetic α-
diversity observed in the Iroise Sea can be explained by the pres-
ence of several chondrichthyan species (e.g., the Blonde ray, Raja 
brachyura, the Shagreen ray, Leucoraja fullonica), the widespread di-
versity of actinopterygian lineages (e.g., Clupeiformes, Labriformes, 
Perciformes), and the significant phylogenetic signal of functional 
traits associated with reproduction, body shape and habitat (i.e., 
depth; Appendix S14). For example, the high level of phylogenetic 

divergence and irregularity in phylogenetic distances among spe-
cies within the Iroise fish communities were influenced by the di-
vergence between actinopterygians and chondrichthyans dating 
back from, at least, 421 Myr (Benton et al., 2015; Stein et al., 2018), 
and the presence of several species phylogenetically closely related 
belonging to the same families (e.g., the sandy ray—Leucoraja circu-
laris, the shagreen ray—Leucoraja fullonica and the blonde ray—Raja 
brachyura from the Rajidae). Most of the chondrichthyans were de-
tected near the Sein Island at both stations of the Raz de Sein (RdS, 
RdS-2) and Tévennec (T). These stations also contained communities 
with the highest level of functional richness, divergence and irreg-
ularity, especially Tévennec (Figure 3) compared to the rest of the 
area. Although elasmobranchs seemed to drive the diversity pat-
terns for the three biodiversity components, these patterns were 
also observed, to a lesser degree, with actinopterygian taxa only 
(Appendix S12).

The lower α-diversity detected in the southern part of the study 
area (including Audierne Bay and both Armen stations; Figure  1), 
is mainly due to the presence of many small and medium-sized pe-
lagic species (e.g., Sardinus pilchardus, Engraulis encrasicolus, Sprattus 
sprattus, Alosa fallax, Scomber scombrus) and a low proportion of 
chondrichthyans (22.2% vs. 77.8% in the Iroise Sea). These spe-
cies belong to two main lineages (Clupeiformes, Scombriformes), 
which explains the lower level of phylogenetic divergence and ir-
regularity in phylogenetic distances compared to the Iroise Sea. 
Moreover, the functional clustering is stronger in the southern 
stations, indicating that more species perform similar functions, 
which increases functional redundancy. For example, 66% of the 
species in the southern area share the same reproduction mode 
with dioecy, external fertilization and no parental care, compared 
to only 36% in the Iroise Sea. The south also included 57% of fu-
siform species (e.g., Alosa fallax, Sprattus sprattus) against 45% in 
the north. Identified biodiversity gradients were robust to sampling 
and sample treatment uncertainty, since station replicates (use of 
2 filters of 30 L) showed good level of agreement (dissimilarity β jac 
mean  =  0.183 ± 0.092) with detection of similar species among 
paired filters. Moreover, the analysis performed using a randomly 
selected filter for each station instead of pooling the two filters also 
showed strong North/South differences supporting the robustness 
of our results (Appendix S13). However, replication quality and sam-
pling effort may vary according to the studied environment because 
biotic and abiotic conditions can influence degradation, deposition 
and detection of eDNA (Stewart,  2019). For example in highly di-
verse tropical marine ecosystems where eDNA shedding and decay 
rates tend to be higher, partially due to higher water temperature (Jo 
et al., 2019), a study by Stauffer et al. (2021) highlighted strong dis-
similarity in species composition between filtration replicates (e.g., 
dissimilarity β jac mean  =  0.729 ± 0.102 in the West Indian Ocean; 
β jac mean = 0.528 ± 0.146 in the Caribbean Sea, with a major con-
tribution of the turnover component for both sampling areas) and 
required additional sampling efforts to ensure robust biodiversity 
estimates.
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4.2  |  Influence of habitat and fishing

The higher α-diversity observed in the Iroise Sea may be related 
to its habitat complexity and diversity with the presence of rocks 
and reefs (Hinschberger & Pauvret, 1968) as well as strong currents 
(Dinter, 2001; Muller et al., 2009), which constrains fishing activities. 
These factors can explain the presence of chondrichthyans in the 
Iroise Sea by potentially providing refuges and increasing the abun-
dance of their prey (Bornatowski et al., 2014). As chondrichthyans 
have a distinct evolutive history separate from actinopterygians, 
they inherited some specific functional traits (e.g., reproduction with 
internal fertilization) through their lineage, which could partially ex-
plain the slightly higher functional diversity detected in the Iroise 
Sea. A high diversity of habitats may increase functional diversity 
within communities by increasing the possibility for resource par-
titioning and specialization (Evans et al. 2005). Habitat heterogene-
ity provides more diversified resources (Evans et al., 2005; La Mesa 
et al., 2011) that can be used by a wider range of functionally distinct 
species performing specific key functions in the ecosystem (Mouillot 
et al., 2013). Moreover, the proximity of the Ushant tidal front off-
shore the Chaussée de Sein, occurring in summer in the Iroise Sea 
(Schultes et al., 2013), leads to phytoplankton and mesozooplankton 
diversity hotspots (Brandão et al., 2021; Ramond et al., 2021), which 
may, therefore, represent abundant trophic resources for planktivo-
rous fish species (e.g., anchovies, pilchards; Brandão et al., 2021).

Although functional diversity is slightly higher in the Iroise Sea, 
communities across the whole study area tended to be functionally 
clustered indicating that despite species belong to very distinct phy-
logenetic lineages in the Iroise Sea (i.e., phylogenetic overdispersion; 
Figure 3) they shared common functional traits and performed simi-
lar key functions than those present in the southern part. The num-
ber and the choice of traits to document the different functions (e.g., 
mobility, food acquisition, reproduction, predation, habitat use) are 
known to influence functional space and functional diversity pat-
terns (Zhu et al., 2017), especially functional richness, while diver-
gence and regularity estimates are more robust (Legras et al., 2020). 
In addition, only few modalities characterized some functional traits 
(e.g., the reproduction mode) despite a long evolution among dis-
tinct clades, which can quickly create a “trait saturation” effect due 
to oversimplification that does not reflect real evolutionary conver-
gences (Kohli & Jarzyna,  2021). However, we do not believe that 
the detected patterns were caused by a loss of information in the 
five dimensional functional space, as most studies agree that three 
to six dimensions are sufficient to provide an operational trait-
space capturing most of the variability (Maire et al., 2015; Mouillot 
et al., 2021). Furthermore, the functional clustering detected by the 
Fric index based on this reduced functional space was confirmed by 
the functional Hill number (Figure 3), an alternative measure of func-
tional richness based on the whole functional space.

The lower α-diversity for the three biodiversity components in 
the southern part of the study area is probably due to lower habi-
tat complexity (flat bedrock) and higher fishing pressure in the ex-
ploited Audierne Bay (Hénaff et al.,  2015). At almost all southern 

stations, we noticed the presence of small pelagic species such 
as European anchovy (Engraulis encrasicolus), European pilchard 
(Sardina pilchardus), or sprat (Sprattus sprattus) that share a common 
evolutive history (Clupeiforme order) and functional trait modali-
ties specific to an r-selected reproductive strategy (e.g., small size, 
external fertilization, no parental care) favoring offspring quantity 
(Stearns, 1977) and dispersal. The size-selective pressure of fishing 
may have favored species with such traits enabling quick recoloniza-
tion for areas constantly under pressure from which larger and rarer 
fishes have been removed (Farriols et al., 2017; Pauly et al., 1998). 
Moreover, lower habitat complexity might prevent high resource 
partitioning and specialization and may require a smaller range of 
ecological functions.

4.3  |  Functional and phylogenetic 
uniqueness patterns

Our multicomponent β-diversity approach revealed the uniqueness 
of several offshore stations and the strong nestedness of some sta-
tions in the Audierne Bay. Higher levels of taxonomic, phylogenetic, 
and functional turnover have been detected on the Chaussée de 
Sein (CdS, CdS-2) and at Armen stations (SA; Figure 4). Such singu-
larities were mostly due to the presence of DNA from John Dory 
(Zeus faber, Zeiforme), boarfish (Capros aper, Acanthuriforme) and 
blackbelly rosefish (Helicolenus dactylopterus, Perciforme), that were 
only detected at these stations. These species belong to distinct 
phylogenetic lineages and exhibit different functional trait mo-
dalities (e.g., maximum length possibly reaching 30 cm for boarfish, 
50 cm for blackbelly rosefish and 90 cm for John Dory; Froese & 
Pauly, 2021) providing them both unique phylogenetic histories and 
functional strategies. However, the presence of DNA from some 
of these species supposed to live primarily at deeper depths such 
as the blackbelly rosefish (average depth: 575 m, usual range: 150–
600 m, Froese & Pauly 2021; Mendonça et al., 2006) at the offshore 
stations (60–75 m) could be due to eDNA persistence and transport 
in the marine environment (Andruszkiewicz et al., 2019; Barnes & 
Turner, 2016). Indeed, the strong tidal currents in this area probably 
increased vertical mixing caused by bottom friction (Dinter, 2001; 
Muller et al., 2009; Ramond et al., 2021), which could have gener-
ated physical dispersion of eDNA fragments from deeper areas 
located around these sampling stations, possibly questioning the ac-
tual presence of these species and the uniqueness of these stations. 
Interestingly, despite the strong tidal currents, we could not detect 
these species in the coastal stations, which suggests that eDNA mol-
ecules could be too diluted and degraded to be detected if sampled 
far from their source. Additional studies will be needed to refine our 
understanding of the spatial scale of eDNA transport and the spatial 
accuracy of species detection. The strong nestedness recovered for 
the three diversity components for the stations mostly located in 
the Audierne Bay (SSA, BA-2, BA-3) was caused by the presence of 
a subset of small pelagic species belonging to Clupeiformes that are 
widespread in the area and which share similar functional traits.
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4.4  |  Limitations and perspectives

Although the water eDNA metabarcoding method is promising and 
already showing results at a regional scale, it is necessary to reduce 
several sources of uncertainty before using it routinely as a new 
biomonitoring approach (Polanco-Fernández et al.,  2021). First, it 
remains unclear how long and how far eDNA molecules can travel 
before they become too degraded to be detected (Andruszkiewicz 
et al., 2019; Andruszkiewicz Allan et al., 2021; Fukaya et al., 2021; 
Thomsen et al.,  2012). Fine-scale hydrodynamic structures (local 
currents, eddies) might blur the signal between the observed spa-
tial pattern of DNA distributions and the location of the excreting 
individuals if the transport forces overtake DNA excretion and deg-
radation (Thomsen et al., 2012, but see Port et al., 2016). However, 
in our study the spatial distribution of species' eDNA is consistent 
with the spatial distribution of species based on local knowledge 
from fishermen, (Laurent Maréchal, personal communication), dif-
ferences in habitat complexity and fishing pressure, and species eco-
logical traits. For example, we preferentially detected Chelon sp., an 
estuarine taxon (Froese & Pauly, 2021), at the coastal stations in the 
Audierne Bay close to the Goyen estuary (Appendix S2). Second, we 
may not have detected all species potentially present in the study 
area because we carried out sampling at the water surface and thus 
may have missed some benthic species. The use of a single marker 
could have also reduced the range of species detected (Cilleros 
et al.,  2019). A multimarker metabarcoding approach could widen 
the species detection range and help discriminate between closely 
related taxa by combining the qualities and specificities of each 
marker for more complete biodiversity surveys (Polanco-Fernández, 
Richards, et al., 2021; Stefanni et al., 2018). Another source of uncer-
tainty in species detection comes from the lack of species sequences 
available in genetic databases that also may considerably reduce the 
breadth of detected biodiversity (Marques et al., 2021). In addition, 
the presence of DNA sequences belonging to distant relative spe-
cies in genetic databases and the remaining sequence annotation 
problems may lead to false-positive detections, which require care-
ful curation (Cilleros et al., 2019; Yamamoto et al., 2017). To address 
these issues, sustainable data quality management requires imple-
menting quality assurance measures when developing the reference 
library, based on valid taxonomy and formally correct barcode se-
quences, as well as quality control to detect contamination or recent 
taxonomic changes (Weigand et al.,  2019). In addition, alternative 
approaches by-passing the use of universal primers and the error 
prone PCR step, such as capture enrichment, are being developed to 
improve the taxonomic accuracy of species identification (Gauthier 
et al., 2020).

Reliably quantifying the relative species abundance through 
eDNA concentration will be a milestone that will greatly improve 
biodiversity assessment (Spear et al., 2021). The correlation between 
species abundance and DNA concentration remains inconsistent in 
situ (Fraija-Fernández et al.,  2020). Positive correlation have been 
mostly demonstrated in laboratory controlled conditions (e.g., Doi 

et al., 2015; Lacoursière-Roussel et al., 2016; Yates et al., 2019), but 
results were contrasted in the marine environment, with studies de-
tecting a significant correlation (Afzali et al., 2021; Evans et al., 2016; 
Pont et al., 2018; Stoeckle et al., 2021; Thomsen et al., 2016) while 
others only detected a correlation for some species and not for oth-
ers (Fraija-Fernández et al., 2020; Yates et al., 2019). Refining tech-
niques used to determine species abundance from eDNA represents 
an area of active research (Doi et al.,  2015; Fukaya et al.,  2021; 
Yoshitake et al., 2021) that will help to fulfill the full potential of mul-
ticomponent and multifacet biodiversity assessments (e.g., full use 
of the unifying framework of Hill numbers; Chao et al., 2014).

5  |  CONCLUSION

We showed how combining functional and phylogenetic information 
with eDNA metabarcoding was efficient to recover the multiple com-
ponents of biodiversity at regional scale, highlighting a north/south 
diversity gradient. Water eDNA metabarcoding revealed a greater 
diversity in the Iroise Sea, an ecosystem including a higher diversity 
of habitats and more difficult to access areas for fishing compared 
to the Audierne Bay. This multicomponent biodiversity assessment 
investigating three diversity facets using eDNA metabarcoding rep-
resents a promising avenue to determine conservation prioritization 
by providing a more holistic view on diversity. The eDNA approach 
offers new perspectives to increase spatial and temporal sampling 
in order to better monitor community dynamics and understand re-
sponses to current changes (Seymour et al., 2021). The application of 
such an analytic framework from eDNA metabarcoding to multicom-
ponent biodiversity assessment will help to refine policy manage-
ment and thus to conserve biodiversity in all its complexity (Pollock 
et al., 2020) by integrating more quickly marine ecosystem changes 
into conservation planning (Ferrier & Wintle, 2009).
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